1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gogolik [260]
3 years ago
11

Factor the Trinomial:2a^2 + 3a + 1

Mathematics
2 answers:
ohaa [14]3 years ago
8 0

2a^2 + 3a + 1

= 2a^2 + 2a + a + 1

= 2a(a + 1) + 1 (a + 1)          ( a + 1) is common)) so it is

= (2a + 1)(a + 1)  (answer)

yKpoI14uk [10]3 years ago
5 0

Try "factoring by grouping."

The binomial factors of  2a^2 + 3a + 1  must start with a and 2a respectively, so that the product of these first terms is 2a^2.   Also note that a and 2a must add up to 3a.  They do.

Then  2a^2 + 3a + 1  = (2a+1)(a+1).

You might be interested in
A plate of glass with parallel faces having a refractive index of 1.57 is resting on the surface of water in a tank. A ray of li
frutty [35]

Answer:

27.26^{\circ}

Step-by-step explanation:

We are given that

n_g=1.57

n_w=1.33

Angle of incidence,i=37.5 degree

We have to find the angle of refraction into the water made by ray wit the normal to the surface.

Refractive index of water,n_a=1

By Snell's law

\frac{n_g}{n_a}=\frac{sin i}{sin r}

sin r=\frac{n_a sini}{n_g}=\frac{1\times sin37.5}{1.57}

sin r=0.388

r=sin^{-1}(0.388)=22.83^{\circ}

Again for glass water surface

Using Snell's law

Angle of incidence,i'=22.83 degree

\frac{n_w}{n_g}=\frac{sin i}{sin r}

\frac{1.33}{1.57}=\frac{sin22.83}{sin r'}

sin r'=\frac{1.57sin(22.83)}{1.33}=0.458

r'=sin^{-1}(0.458)=27.26^{\circ}

8 0
3 years ago
Are these ratios equivalent?<br> 12 cards to 72 animals, 11 marbles to 66 marbles
Dmitrij [34]
yes

72/12 = 6
66/11 = 6

6 = 6
8 0
3 years ago
Solve for u. -14 = u ÷ 8
Elodia [21]

The correct answer is

u= -112

6 0
3 years ago
Last one - Thank you an advance :)
Ivan
Answers:
a. Given
b. Transitive property of congruence
c. Vertical angles are congruent
d. Transitive property of congruence

Let me know if you need any clarification as to how I got those answers. They should be self-explanatory but I'm happy to clarify further if needed. 

5 0
3 years ago
Read 2 more answers
Plz solve this problem of trigonometry<br>i am an aakashian​
makkiz [27]

Step-by-step explanation:

\bf L.H.S = \tt \dfrac{sec\: \theta + tan \:  \theta - 1}{tan \:  \theta - sec \:  \theta + 1}  \\  \\

:  \implies \tt \dfrac{\frac{1}{cos  \: \theta}  +  \frac{sin \:  \theta}{cos \: \theta}  - 1}{  \frac{sin \:  \theta}{cos \:  \theta} -  \frac{1}{cos \:  \theta} + 1   } \:  =   \dfrac{1 + sin \:  \theta - cos \:  \theta}{sin \: \theta + cos \:  \theta} \\  \\

: \implies \tt\dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta + (cos \:  \theta - 1)} \:  \times  \: \dfrac{ sin \:  \theta - (cos \:  \theta - 1)}{sin \: \theta  -  (cos \:  \theta - 1)} \\  \\

: \implies \tt\dfrac{ sin^{2}  \:  \theta  + cos^{2}  \:  \theta  + 1 - 2  \: cos \:  \theta  - 2  \: sin \:  \theta \: (cos \:  \theta - 1)}{sin^{2}  \: \theta  -  (cos \:  \theta - 1)^{2} } \\  \\

: \implies \tt\dfrac{1 + 1 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta - 1 + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 - 2 \:  cos \:  \theta - 2 \: sin \:  \theta  \: cos \:  \theta + 2 \: sin \: \theta}{sin^{2} \: \theta + cos^{2} \: \theta  - sin^{2} \:  \theta - cos^{2}   \:  \theta  + 2 \: cos \:  \theta } \\  \\

: \implies \tt\dfrac{2 (1 - \:  cos \:  \theta )- 2 \: sin \:  \theta  (1 - \: cos \:  \theta)}{ 2 \: cos \: \theta - 2 \: cos^{2}   \:  \theta} \\  \\

: \implies \tt\dfrac{(2  +  2 \:  sin \:  \theta)  \:  \cancel{(1 -  cos\:  \theta)}}{2 \: cos \:  \theta  \:  \cancel{(1 - cos \:  \theta)}} \:  =  \:  \dfrac{1 + sin \:  \theta}{cos \: \theta}  \\  \\

: \implies\tt\dfrac{1 + sin \:  \theta}{cos \: \theta}  \:  \times  \: \dfrac{1  -  sin \:  \theta}{1 - sin \: \theta} \\  \\

:  \implies\tt\dfrac{1 + sin^{2}  \:  \theta}{cos \: (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos^{2}  \:  \theta}{cos \: \theta (1 - sin \: \theta)} \\  \\

:  \implies\tt\dfrac{cos \:  \theta}{1 - sin \: \theta}  \:  = \:  \bf{ R.H.S}\\  \\

\huge\bigstar  \:\underline{\red{\sf Hence, Proved}} \:  \bigstar \\

6 0
4 years ago
Other questions:
  • Find the supplement of the angle.<br> A=133 degrees.
    12·2 answers
  • An angle measures 42 degrees. What is the measure of its complement.
    10·2 answers
  • A child puts one five-rupee coin of her saving in the piggy bank on the first day. She increases her saving by one five-rupee co
    5·1 answer
  • What are the 3 rules for using angles to create triangles
    5·1 answer
  • 1. number 5 added to three times the product of M and N.
    11·1 answer
  • Answer? Which one is it? 1 2 3 or 4
    12·1 answer
  • I need these done ASAP! do the properly for brainliest!
    15·1 answer
  • Write the equation of a line that is parallel to the y axis and passes through the point (-2,5).
    14·1 answer
  • Fracesca is growing 1/2 inch each year. How many years will it take her to grow 6 inches?
    12·1 answer
  • Factor the expression step by step : x^3 - x^2
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!