Answer: 2 lbs of cherries
Cherries = $5 per pound
Oranges = $2 per pound
Total Cost = $18
Total weight = 6 lb
------------------------------------
Define x and y
------------------------------------
Let x be the number of lb of cherries
Let y be the number of lb of oranges
------------------------------------
Construct equations
------------------------------------
x + y = 6 ---------------------------- (1)
5x + 2y = 18 ---------------------------- (2)
------------------------------------------------------------------------
Solve x and y
------------------------------------------------------------------------
From equation (1):
x + y = 6
x = 6 - y
------------------------------------------------------------------------
Substitute x = 6 - y into equation 2
------------------------------------------------------------------------
5x + 2y = 18
5 (6 - y) + 2y = 18
30 - 5y + 2y = 18
3y = 30 - 18
3y = 12
y = 4
------------------------------------------------------------------------
Substitute y = 4 into equation (1)
------------------------------------------------------------------------
x + y = 6
x + 4 = 6
x = 2
------------------------------------------------------------------------
Find the weight of cherries and oranges
------------------------------------------------------------------------
Cherry = x = 2 lb
Oranges = y = 4 lbs
------------------------------------------------------------------------
Answer: Alex bought 2 lb of cherries
------------------------------------------------------------------------
3(3b+2)=-30 perform indicated multiplication on left side...
9b+6=-30 subtract 6 from both sides
9b=-36 divide both sides by 9
b=-4
T.S.A. = pi (7) (24) + pi (7)^2 = 168pi + 49pi = 217 pi cm^2 = more or less 681,73 cm^2
9514 1404 393
Answer:
b = √32
Step-by-step explanation:
The Pythagorean theorem tells you the relation between the side lengths is ...
2² + b² = 6²
b² = 36 -4 = 32
b = √32
_____
<em>Additional comment</em>
This radical can be simplified by removing a square from under the radical.

We convert degrees to radian by multiplying by (
)
= (345) × (
)
= (
) × (π)
= 1.9166π
= 1.9166 × 3.14
= 6.018 rad
≈ 6.02 rad