√6 is between 2 and 3.
2^2= 4
3^2=9
The value of 6 is between that of 4 and 9.
Hope this helps!
Answer:
B
Step-by-step explanation:
the answer is b because the they are only 5 numbers of student that check in for assignment details
Answer:
1.) Exponential Growth
2.) Exponential Decay
3.) Exponential Growth
4.) Exponential Decay
Step-by-step explanation:
<u>1.) </u><u><em>f (x) </em></u><u>= 0.5 (7/3)^</u><u><em>x</em></u>
↓
always increasing
<u>2.) </u><u><em>f (x) </em></u><u>= 0.9 (0.5)^</u><u><em>x</em></u>
<em> </em>↓
always decreasing
<u>3.) </u><u><em>f (x) </em></u><u>= 21 (1/6)^</u><u><em>x</em></u>
↓
always increasing
<u>4.) </u><u><em>f (x) </em></u><u>= 320 (1/6)^</u><u><em>x</em></u>
<em> </em> ↓
always decreasing
<u><em>EXPLANATION:</em></u>
It's exponential growth when the base of our exponential is bigger than 1, which means those numbers get bigger. It's exponential decay when the base of our exponential is in between 1 and 0 and those numbers get smaller.
You can factor (x^3 and 6x^2) and (-4x and -24).
So x^2(x+6) - 4(x+6)
(x^2-4)(x+6)
(x-2)(x+2)(x+6)
Answer:
To figure out the common denominator for these fractions, I'll first need to factor that quadratic in the denominator on the right-hand side of the rational equation. This will also allow me to find the disallowed values for this equation. Factoring gives me:
x2 – 6x + 8 = (x – 4)(x – 2)
The factors of the quadratic on the right-hand side "just so happen" to be duplicates of the other denominators. This often happens in these exercises. (So often, in fact, that if you get completely different factors, you should probably go back and check your work.)
Step-by-step explanation: