1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
san4es73 [151]
3 years ago
9

WILL MARK BRAINLIEST !! PLEASE HELP ME OUT !!!

Mathematics
1 answer:
-Dominant- [34]3 years ago
3 0

To begin, Arnold should sort on whether or not it is a screw, nut, bolt.

This might only be # 1 and 3 but you should be able to put together a number line with the information I provided. Some of the #s may look different but that is because I used the Least Common Denominator. Hope this helps!

Screws: Least to greatest (top = least)

4 Screws 4/64” x 3” long

12 Screws 5/64” x 3” long

3 Screws 6/64” x 4” long

6 Screws 11/64” x 4” long

16 Screws 24/64” x 2” long

1 Screw 28/64” x 3” long

1 Screw 32/64” x 3” long  

1 Screw 48/64” x 2” long

Hex Bolts: Least to greatest by diameter (top = least)

4 Hex bolts 1.5” x 4” long

4 Hex bolts 1.875” x 4” long

1 Hex bolt 2.25” x 2” long

6 Hex bolts 3.375” x 3” long

4 Hex bolts 3.75” x 3” long

You might be interested in
PLSSSSS HELPPPPP MEEE I WILL GIVE BRIANLIEST!!!
JulijaS [17]

Answer:

84 students

Step-by-step explanation:

Ratio of 1 teacher : no. Of students

36 / 3 = 12

1 teacher = 12 students

12 * 7 = 84

6 0
3 years ago
What are the solutions of the equation x4 95x2 â€"" 500 = 0? Use factoring to solve.
liq [111]

All the values of the <em>x</em> <em> </em>for the given function are \sqrt{5},-\sqrt{5}, 10i and -10i.

Given-

Given function is,

x^{4}+95x^2-500=0

Rewrite the equation,

(x^2)^2+95x^2-500=0

Let <em>u </em>in place of x^2 and rewrite the equation in the form of u,

u^2+95u-500=0

Break the 95 in factors and rewrite the equation,

u^2+100u-5u-500=0

u(u+100)-5(u+100)=0

(u+100)(u-5)=0

Replace the value of u with x^2,

(x^2+100)(x^2-5)=0

It is known that If any individual factor on the left side of the equation is equal to zero then the entire expression will be equal to zero. therefore we get,

x^2-5=0

further, solve it,

x^2=5

x=\sqrt{5},-\sqrt{5}

And another factor is

x^2+100=0

x^2=-100

x=10i,-10i

Hence, all the values of the <em>x </em>for the given function are \sqrt{5},-\sqrt{5},  10i , and  -10i.

For more about the factorization, follow the link below-

brainly.com/question/6810544

5 0
3 years ago
A man is walking a triangular path, partially represented by the vectors AB−⇀−=⟨0,10⟩ and CA−⇀−=⟨−12,0⟩ . If his distance is rep
Citrus2011 [14]

Answer:

Step-by-step explanation:

<h2> Subtract 0,10 and 12,0 switch it to look like 12,0 and ,10 which i guess is A </h2>
6 0
3 years ago
Can u help me please?
Minchanka [31]

Answer:

0.407 because in the others 7 comes before the 0

3 0
3 years ago
At NC State University, 16.4% of the undergraduate classes have more than 50 students. If a random sample of 200 undergraduate c
Lena [83]

Answer:

We need to check the conditions in order to use the normal approximation.

np=200*0.164=32.8 \geq 10

n(1-p)=200*(1-0.164)=167.2 \geq 10

p \sim N(p,\sqrt{\frac{p(1-p)}{n}})

The mean is given by:

p =0.164

And the deviation is given by:

\sigma_{p}= \sqrt{\frac{0.164*(1-0.164)}{200}}= 0.0262

So then the correct options for this case are:

The sampling distribution will be approximately normal.

The mean of the sampling distribution will be 16.4%.

The standard deviation of the sampling distribution will be 0.0262.

Step-by-step explanation:

Previous concepts

The binomial distribution is a "DISCRETE probability distribution that summarizes the probability that a value will take one of two independent values under a given set of parameters. The assumptions for the binomial distribution are that there is only one outcome for each trial, each trial has the same probability of success, and each trial is mutually exclusive, or independent of each other".

Let X the random variable of interest, on this case we now that:

X \sim Binom(n=200, p=0.164)

The probability mass function for the Binomial distribution is given as:

P(X)=(nCx)(p)^x (1-p)^{n-x}

Where (nCx) means combinatory and it's given by this formula:

nCx=\frac{n!}{(n-x)! x!}

We need to check the conditions in order to use the normal approximation.

np=200*0.164=32.8 \geq 10

n(1-p)=200*(1-0.164)=167.2 \geq 10

The population proportion have the following distribution  

p \sim N(p,\sqrt{\frac{p(1-p)}{n}})

The mean is given by:

p =0.164

And the deviation is given by:

\sigma_{p}= \sqrt{\frac{0.164*(1-0.164)}{200}}= 0.0262

So then the correct options for this case are:

The sampling distribution will be approximately normal.

The mean of the sampling distribution will be 16.4%.

The standard deviation of the sampling distribution will be 0.0262.

6 0
3 years ago
Other questions:
  • 03158962787 round to nearest whole no
    7·2 answers
  • What is the missing length of this rectangle?
    5·1 answer
  • A small business owner borrowed $4,200 at an annual simple interest rate of 12%. What is the total amount that must be repaid in
    13·1 answer
  • Allen has been asked to replicate a scientific diagram in his notebook. The teacher has told him that variations in lengths of u
    9·1 answer
  • 3|3k|= 27 PLEASE HELP!
    14·1 answer
  • How many people were surveyed for the graph?
    6·2 answers
  • Put in order from least to greater3/8,3/4,5/6,1/2
    14·1 answer
  • Can someone Explain PI to me I am very confused.
    8·2 answers
  • Give an example of a piecewise function
    9·1 answer
  • Translate the following phrase into algebraic expression , the number of dollars Paul owes minus 32
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!