1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
3 years ago
14

(-2x-1)^2=0 How to solve brackets, please help

Mathematics
2 answers:
RoseWind [281]3 years ago
5 0
All you have to know is 
( a + b )² = ( a + b ) ( a + b ) 
In this case, 
Since "a" is negative, make it into positive for easier simplification.

(-2x-1)² = 0
-(2x+1)² = 0
-[(2x+1) (2x+1)] = 0
Negative got eliminated when divided to 0
Thus,
x = -1/2  ,   x = -1/2









malfutka [58]3 years ago
3 0
Not quite sure what you mean by brackets, but you can get the solution to this equation in a few steps:

<span>(-2x - 1)</span>² <span>= 0  ... square root both sides to eliminate the squared binomial
</span>√(-2x - 1)² = √0  ... simplify; the square is canceled out and the root of 0 brings you back to 0
-2x - 1 = 0  ... solve like a two-step equation
-2x = 1
x = -1/2 is your x-value.
You might be interested in
A triangle with all sides of equal length is a/an _______ triangle.
Lubov Fominskaja [6]
The answer is equilateral
6 0
3 years ago
Read 2 more answers
Evaluate the following definite integral​
mihalych1998 [28]

Answer:

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

General Formulas and Concepts:

<u>Symbols</u>

  • e (Euler's number) ≈ 2.71828

<u>Algebra I</u>

  • Exponential Rule [Multiplying]:                                                                     \displaystyle b^m \cdot b^n = b^{m + n}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Definite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

  • U-Solve

Integration by Parts:                                                                                               \displaystyle \int {u} \, dv = uv - \int {v} \, du

  • [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Exponential Rule - Multiplying]:                                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \int\limits^1_0 {x^5e^{x^3}e} \, dx
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{x^3}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-solve.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = x^3
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3x^2 \ dx
  3. [<em>u</em>] Rewrite:                                                                                                     \displaystyle x = \sqrt[3]{u}
  4. [<em>du</em>] Rewrite:                                                                                                   \displaystyle dx = \frac{1}{3x^2} \ du

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] U-Solve:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du
  2. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du
  3. [Integral] Simplify:                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^3e^u} \, du
  4. [Integrand] U-Solve:                                                                                      \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {ue^u} \, du

<u>Step 5: integrate Pt. 4</u>

<em>Identify variables for integration by parts using LIPET.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = u
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = du
  3. Set <em>dv</em>:                                                                                                           \displaystyle dv = e^u \ du
  4. [<em>dv</em>] Exponential Integration:                                                                         \displaystyle v = e^u

<u>Step 6: Integrate Pt. 5</u>

  1. [Integral] Integration by Parts:                                                                        \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]
  2. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]
  4. Simplify:                                                                                                         \displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
What is the prime factorization of 155
xenn [34]
The factors<span> of 155 are 1, 5, 31, and 155, thus </span>the prime factorization should be 5 and 31.
5 0
3 years ago
What is the cross section shown below?
goldenfox [79]
<h3>Answer: Choice A) circle</h3>

Explanation:

Imagine that white rectangle as a blade that cuts the cylinder as the diagram shows. If you pull the top cylinder off and examine the bottom of that upper piece, then you'll see a circle forms. It's congruent to the circular face of the original cylinder. This is because the cutting plane is parallel to both base faces of the cylinder. Any sort of tilt will make an ellipse form. Keep in mind that any circle is an ellipse, but not vice versa.

Another example of a cross section: cut an orange along its center and notice that a circle (more or less) forms showing the inner part of the orange.

Yet another example of a cross section: Imagine an egyptian pyramid cut from the top most point on downward such that you vertically slice it in half. If you pull away one half, you should see a triangular cross section forms.

3 0
3 years ago
Read 2 more answers
Choose the graph below that represents the following system of inequalities:
castortr0y [4]
Yshejrhhe is they easiest of them all and as you can see I just can’t fail it bro ik too smart yk it’s y>-3x +1-5
7 0
2 years ago
Other questions:
  • The sum of 9 and twice a number use the variable n to represent the unknown number
    11·2 answers
  • 1/5x=4 <br><br> what is the answer
    8·1 answer
  • Alex bought 7.25 pounds of produce. If the produce was priced at $2.12 per pound, how much did Alex pay for the produce? How muc
    6·2 answers
  • Really needing help with this problem
    11·2 answers
  • -8×+y=-5 what is the ordered pair​
    7·1 answer
  • A rectangular room is 5 meters longer than it is wide, and its perimeter is 22 meters. Find the dimension of
    7·2 answers
  • Classify the triangle based on side lengths 2, 10 and 11
    12·1 answer
  • <img src="https://tex.z-dn.net/?f=Pls%20help.thanks" id="TexFormula1" title="Pls help.thanks" alt="Pls help.thanks" align="absmi
    13·1 answer
  • Which point is on the graph of the following function rule: y-7-5x
    12·1 answer
  • Let R(x)=3x3+2x2+x and S(x)=4x2+1. Find R(x)+S(x).
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!