Answer:

General Formulas and Concepts:
<u>Symbols</u>
- e (Euler's number) ≈ 2.71828
<u>Algebra I</u>
- Exponential Rule [Multiplying]:

<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Multiplied Constant]: 
U-Substitution
Integration by Parts: 
- [IBP] LIPET: Logs, inverses, Polynomials, Exponentials, Trig
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Integrate Pt. 1</u>
- [Integrand] Rewrite [Exponential Rule - Multiplying]:

- [Integral] Rewrite [Integration Property - Multiplied Constant]:

<u>Step 3: Integrate Pt. 2</u>
<em>Identify variables for u-solve.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

- [<em>u</em>] Rewrite:
![\displaystyle x = \sqrt[3]{u}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20x%20%3D%20%5Csqrt%5B3%5D%7Bu%7D)
- [<em>du</em>] Rewrite:

<u>Step 4: Integrate Pt. 3</u>
- [Integral] U-Solve:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = e\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{3x^2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20e%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7B%28%5Csqrt%5B3%5D%7Bu%7D%29%5E3%7D%5Cfrac%7B1%7D%7B3x%5E2%7D%7D%20%5C%2C%20du)
- [Integral] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}\int\limits^1_0 {x^5e^{(\sqrt[3]{u})^3}\frac{1}{x^2}} \, du](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7B%28%5Csqrt%5B3%5D%7Bu%7D%29%5E3%7D%5Cfrac%7B1%7D%7Bx%5E2%7D%7D%20%5C%2C%20du)
- [Integral] Simplify:

- [Integrand] U-Solve:

<u>Step 5: integrate Pt. 4</u>
<em>Identify variables for integration by parts using LIPET.</em>
- Set <em>u</em>:

- [<em>u</em>] Differentiate [Basic Power Rule]:

- Set <em>dv</em>:

- [<em>dv</em>] Exponential Integration:

<u>Step 6: Integrate Pt. 5</u>
- [Integral] Integration by Parts:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - \int\limits^1_0 {e^u} \, du \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%20%5Cbigg%5B%20ue%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20-%20%5Cint%5Climits%5E1_0%20%7Be%5Eu%7D%20%5C%2C%20du%20%5Cbigg%5D)
- [Integral] Exponential Integration:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3} \bigg[ ue^u \bigg| \limits^1_0 - e^u \bigg| \limits^1_0 \bigg]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%20%5Cbigg%5B%20ue%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20-%20e%5Eu%20%5Cbigg%7C%20%5Climits%5E1_0%20%5Cbigg%5D)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^1_0 {x^5e^{x^3 + 1}} \, dx = \frac{e}{3}[ e - e ]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%5Climits%5E1_0%20%7Bx%5E5e%5E%7Bx%5E3%20%2B%201%7D%7D%20%5C%2C%20dx%20%3D%20%5Cfrac%7Be%7D%7B3%7D%5B%20e%20-%20e%20%5D)
- Simplify:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e
The factors<span> of 155 are 1, 5, 31, and 155, thus </span>the prime factorization should be 5 and 31.
<h3>
Answer: Choice A) circle</h3>
Explanation:
Imagine that white rectangle as a blade that cuts the cylinder as the diagram shows. If you pull the top cylinder off and examine the bottom of that upper piece, then you'll see a circle forms. It's congruent to the circular face of the original cylinder. This is because the cutting plane is parallel to both base faces of the cylinder. Any sort of tilt will make an ellipse form. Keep in mind that any circle is an ellipse, but not vice versa.
Another example of a cross section: cut an orange along its center and notice that a circle (more or less) forms showing the inner part of the orange.
Yet another example of a cross section: Imagine an egyptian pyramid cut from the top most point on downward such that you vertically slice it in half. If you pull away one half, you should see a triangular cross section forms.
Yshejrhhe is they easiest of them all and as you can see I just can’t fail it bro ik too smart yk it’s y>-3x +1-5