(-1.0) (-4,-1) (-1,-5) hopefully this helps (x,y)
We look at the point that has not moved and another point (if neccecary)
the point that has not moved is on the axis of reflection
that pont is D
we see in my diagram that the only axis that that is on is x=0
the answer is B. x=0
Answer:
see below
Step-by-step explanation:
a. Has a slope of 2 and passes through (10,17)
Using the slope intercept form
y = mx+b where m is the slope and b is the y intercept
y = 2x+b
Substitute the point into the equation
17 = 2(10)+b
17 = 20+b
Subtract 20 from each side
17-20 =b
-3 =b
y = 2x-3
b. passes through (1,-4) and (2,-5)
First find the slope
m= (y2-y1)/(x2-x1)
= (-5- -4)/(2-1)
= (-5+4)/(2-1)
= -1/1
= -1
Using the slope intercept form
y = -x+b
Substitute a point into the equation
-4 = -1(1) +b
-4 = -1+b
Add 1 to each side
-3 = b
y = -x+3
1/16 of a cup is in each brownie
Answer:
a
The estimate is 
b
Method B this is because the faulty breaks are less
Step-by-step explanation:
The number of microchips broken in method A is 
The number of faulty breaks of method A is 
The number of microchips broken in method B is 
The number of faulty breaks of method A is 
The proportion of the faulty breaks to the total breaks in method A is


The proportion of the faulty to the total breaks in method B is

For this estimation the standard error is

substituting values


The z-values of confidence coefficient of 0.95 from the z-table is

The difference between proportions of improperly broken microchips for the two breaking methods is mathematically represented as
![K = [p_1 - p_2 ] \pm z_{0.95} * SE](https://tex.z-dn.net/?f=K%20%3D%20%5Bp_1%20-%20p_2%20%5D%20%5Cpm%20z_%7B0.95%7D%20%2A%20SE)
substituting values
![K = [0.08 - 0.07 ] \pm 1.96 *0.0186](https://tex.z-dn.net/?f=K%20%3D%20%5B0.08%20-%200.07%20%5D%20%5Cpm%201.96%20%2A0.0186)

The interval of the difference between proportions of improperly broken microchips for the two breaking methods is
