A magnifying glass is an example of a simple microscope. The correct answer is will be D, simple microscope.
Answer:
Although more offsprings are produced by the process of external fertilization but the process of internal fertilization is more efficient as compared to external fertilization. This is because, in external fertilization, it is more difficult for the sperm to find the egg and fertilize it. Even after fertilization, it might be that the zygote gets eaten up by a predator. There are none such risks in internal fertilization. The zygote is protected during the internal fertilization which makes this process more efficient.
Lets see both procedures:
<span>Mitosis is a process of cell duplication during which one cell gives rise to two genetically identical daughter cells.
Meiosis, on the other hand, is a division of a germ cell involving two fissions of the nucleus and giving rise to four gametes, or sex cells, each possessing half the number of chromosomes of the original cell.
Mitosis is used by single celled organisms to reproduce; it is also used for the organic growth of tissues, fibers, and mibranes. Meiosis is useful for sexual reproduction of organisms. I hope this can help greatly</span>
Answer:
it increases the viewing size.
Explanation:
Function of microscope is used to enlarge organisms for better look
Answer:
In nature, limiting factors affecting population sizes include how much food and/or shelter is available, as well as other density-dependent factors. Density-dependent factors are not relevant to populations that are below "carrying capacity," (i.e., how much life a habitat can support) but they start to have to become noticeable as populations reach and exceed that limit. The degree of control imposed by a density-dependent factor correlates to population size such that the effect of the limitation will be more pronounced as population increases. Density-dependent factors include competition, predation, parasitism and disease.
Competition
Habitats are limited by space and resource availability, and can only support up to a certain number of organisms before reaching their carrying capacity. Once a population exceeds that capacity, organisms must struggle against one another to obtain scarce resources. Competition in natural populations can take many forms. Animal communities compete for food and water sources whereas plant communities compete for soil nutrients and access to sunlight. Animals also vie for space in which to nest, roost, hibernate, or raise young, as well as for mating rights.
Predation
Many populations are limited by predation; predator and prey populations tend to cycle together, with the predator population lagging somewhat behind the prey population. The classic examples of this are the hare and the lynx: as the hare population increases, the lynx has more to eat and so the lynx population can increase. The increased lynx population results in more predatory pressure on the hare population, which then declines. The drop in food availability in turn causes a drop in the predator population. Thus, both of these populations are influenced by predation as a density-dependent factor.
Parasitism
When organisms are densely populated, they can easily transmit internal and external parasites to one another through contact with skin and bodily fluids. Parasites thrive in densely packed host populations, but if the parasite is too virulent then it will begin to decimate the host population. A decline in the host population will in turn reduce the parasite population because greater distance between host organisms will make transmission by more difficult.
Disease
Disease is spread quickly through densely packed populations due to how close organisms are to one another. Populations that rarely come into contact with one another are less likely to share bacteria, viruses and fungi. Much like the host-parasite relationship, it is beneficial to the disease not to kill off its host population because that makes it more difficult to for the disease to survive.