Upon a slight rearrangement this problem gets a lot simpler to see.
x^3-x+2x^2-2=0 now factor 1st and 2nd pair of terms...
x(x^2-1)+2(x^2-1)=0
(x+2)(x^2-1)=0 now the second factor is a "difference of square" of the form:
(a^2-b^2) which always factors to (a+b)(a-b), in this case:
(x+2)(x+1)(x-1)=0
So g(x) has three real zero when x={-2, -1, 1}
Answer:
option 1 is equivalent to 3^2.3^5
Answer:
The sum of any integer and its opposite is equal to zero. adding two negative integers always yields a negative sum. To find the sum of a positive and a negative integer, take the absolute value of each integer and then subtract these values.
Hello there!
Okay, I don't know if this is a "select all that apply", but I believe that answers 1, 2, and 3 are all equivalent to 0.53.
To see how these fractions are equal, I divided the numerators by the denominators. For instance, you could have 4 over 5 (4/5) and divide 4 by 5 (4/5) to get 0.8. Now you'll do the same thing for the fractions given
24/45=0.533...
8/15=0.533...
48/90=0.533...
5/9=0.5556
As you can see, the only fraction that doesn't equal 0.53, or the outlier, is 5/9 or 0.5556
I hope this helps you out!
Answer:
a= -3/7
b= -0.2
c = -2/8
Step-by-step explanation: