Given:
4log1/2^w (2log1/2^u-3log1/2^v)
Req'd:
Single logarithm = ?
Sol'n:
First remove the parenthesis,
4 log 1/2 (w) + 2 log 1/2 (u) - 3 log 1/2 (v)
Simplify each term,
Simplify the 4 log 1/2 (w) by moving the constant 4 inside the logarithm;
Simplify the 2 log 1/2 (u) by moving the constant 2 inside the logarithm;
Simplify the -3 log 1/2 (v) by moving the constant -3 inside the logarithm:
log 1/2 (w^4) + 2 log 1/2 (u) - 3 log 1/2 (v)
log 1/2 (w^4) + log 1/2 (u^2) - log 1/2 (v^3)
We have to use the product property of logarithms which is log of b (x) + log of b (y) = log of b (xy):
Thus,
Log of 1/2 (w^4 u^2) - log of 1/2 (v^3)
then use the quotient property of logarithms which is log of b (x) - log of b (y) = log of b (x/y)
Therefore,
log of 1/2 (w^4 u^2 / v^3)
and for the final step and answer, reorder or rearrange w^4 and u^2:
log of 1/2 (u^2 w^4 / v^3)
Last month, she had 100.....this month, 30 new members joined and 10 cancelled....thats basically the same as saying 20 new members joined...so there are now 120 members...at 10 per subscription = 120(10) = $ 1200 <=
I am pretty sure R is -19 meters and N is -7 and A is 476 AD

The rows add up to

, respectively. (Notice they're all powers of 2)
The sum of the numbers in row

is

.
The last problem can be solved with the binomial theorem, but I'll assume you don't take that for granted. You can prove this claim by induction. When

,

so the base case holds. Assume the claim holds for

, so that

Use this to show that it holds for

.



Notice that






So you can write the expansion for

as

and since

, you have

and so the claim holds for

, thus proving the claim overall that

Setting

gives

which agrees with the result obtained for part (c).
Answer:
i play baseball mark me as brainliest thank my answer and rate me as a 5 because im white
Step-by-step explanation: