Answer:
the anwser is y=3x
Step-by-step explanation:
I TOOK THE EDINUITY ASSIGHNMENT
So focusing on x^4 + 5x^2 - 36, we will be completing the square. Firstly, what two terms have a product of -36x^4 and a sum of 5x^2? That would be 9x^2 and -4x^2. Replace 5x^2 with 9x^2 - 4x^2: 
Next, factor x^4 + 9x^2 and -4x^2 - 36 separately. Make sure that they have the same quantity inside of the parentheses: 
Now you can rewrite this as
, however this is not completely factored. With (x^2 - 4), we are using the difference of squares, which is
. Applying that here, we have
. x^4 + 5x^2 - 36 is completely factored.
Next, focusing now on 2x^2 + 9x - 5, we will also be completing the square. What two terms have a product of -10x^2 and a sum of 9x? That would be 10x and -x. Replace 9x with 10x - x: 
Next, factor 2x^2 + 10x and -x - 5 separately. Make sure that they have the same quantity on the inside: 
Now you can rewrite the equation as
. 2x^2 + 9x - 5 is completely factored.
<h3><u>Putting it all together, your factored expression is

</u></h3>
|a| = b gives
a =b or a = -b
so,
|-x| = -10
gives
-x = -10 or -x = 10
x = 10, -10
now let us verify,
when x = 10, |-10| = +10 and it is not = -10
so, x= 10 is NOT a solution.
when x = -10, |-(-10)| = |10| = 10 and it is not = -10
so, x= -10 is NOT a solution.
hence, this equation does not have a solution.
If we know that |...| can never be negative, we can directly deduce that this equation does not have any solution.