Answer: 0.025
Step-by-step explanation:
Given : A statistics professor plans classes so carefully that the lengths of her classes are uniformly distributed between the interval [48.0 minutes, 58.0 minutes].
The probability density function :-

Now, the probability that a given class period runs between 50.25 and 50.5 minutes is given by :-
![\int^{50.5}_{50.25}\ f(x)\ dx\\\\=\int^{50.5}_{50.25}\ \dfrac{1}{10}\ dx\\\\=\dfrac{1}{10}|x|^{50.5}_{50.25}\\\\=\dfrac{1}{10}\ [50.5-50.25]=\dfrac{1}{10}\times(0.25)=0.025](https://tex.z-dn.net/?f=%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20f%28x%29%5C%20dx%5C%5C%5C%5C%3D%5Cint%5E%7B50.5%7D_%7B50.25%7D%5C%20%5Cdfrac%7B1%7D%7B10%7D%5C%20dx%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%7Cx%7C%5E%7B50.5%7D_%7B50.25%7D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B10%7D%5C%20%5B50.5-50.25%5D%3D%5Cdfrac%7B1%7D%7B10%7D%5Ctimes%280.25%29%3D0.025)
Hence, the probability that a given class period runs between 50.25 and 50.5 minutes =0.025
Similarly , the probability of selecting a class that runs between 50.25 and 50.5 minutes = 0.025
A=Lw
P=2L+2w
216=Lw
W=216/L...substitute to Perimeter equation
60=2L+2(216/L)
60L=2L^2 + 432
2L^2-60L+432=0
2(L^2 - 30L + 216)=0
2(L-18)(L-12)=0
L=12, W=18 or L=18, W=12
Answer:
1
Step-by-step explanation:
Step-by-step explanation:
answer is shown above, that is a tricky question though.
1, -2
1, -6
4, -6
-2, -6
-2, -1
The cab is 4 blocks away from its starting point.
(I think)