Answer:
x=10,−10
Step-by-step explanation:
one of those two
The vertex of the function f(x) exists (1, 5), the vertex of the function g(x) exists (-2, -3), and the vertex of the function f(x) exists maximum and the vertex of the function g(x) exists minimum.
<h3>How to determine the vertex for each function is a minimum or a maximum? </h3>
Given:
and

The generalized equation of a parabola in the vertex form exists

Vertex of the function f(x) exists (1, 5).
Vertex of the function g(x) exists (-2, -3).
Now, if (a > 0) then the vertex of the function exists minimum, and if (a < 0) then the vertex of the function exists maximum.
The vertex of the function f(x) exists at a maximum and the vertex of the function g(x) exists at a minimum.
To learn more about the vertex of the function refer to:
brainly.com/question/11325676
#SPJ4
Answer: The correct answer is the last one shown in the picture
Step-by-step explanation:
It’s the correct answer because when you subtract the two given equations with like terms you will get (- 25/8x + 63/10) —> when you simplify this you get (-3 1/8x + 6 3/10)
Given : f(x)= 3|x-2| -5
f(x) is translated 3 units down and 4 units to the left
If any function is translated down then we subtract the units at the end
If any function is translated left then we add the units with x inside the absolute sign
f(x)= 3|x-2| -5
f(x) is translated 3 units down
subtract 3 at the end, so f(x) becomes
f(x)= 3|x-2| -5 -3
f(x) is translated 4 units to the left
Add 4 with x inside the absolute sign, f(x) becomes
f(x)= 3|x-2 + 4| -5 -3
We simplify it and replace f(x) by g(x)
g(x) = 3|x + 2| - 8
a= 3, h = -2 , k = -8
<span>2x^3+3x^2-30x+7/x-3 divide</span>