1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
11

I will give brainliest 7k+8=2k-37 Show work pleaseeeee

Mathematics
2 answers:
Artyom0805 [142]3 years ago
6 0

Answer:

k = -9

Step-by-step explanation:

subtract 2k from both sides

_5k+8= -37

subtract 8

_5k = -45

divide by 5

_k = -9

VikaD [51]3 years ago
6 0
Subtract 2k on both sides, to get 5 k +8= -37. Then subtract 8 on both sides to get 5k= -45 Then divide by 5 on both sides to get k= -9.
You might be interested in
Using the equation y = 3x – 5, what would the output be for an input of 4
SSSSS [86.1K]
The input is the x-coordinate and the output is the y-coordinate. If the input is 4, plug 4 into the x variable to find the output, y.

y=3(4)-5
y=12-5
y=7

The output is 7.
8 0
3 years ago
Read 2 more answers
Find the component form of the vector that translates P(4,5) to p'.
Veronika [31]

Answer:

Component form : (-7 , 2)

Step-by-step explanation:

P(4 , 5) = P'(4 +x , 5+y) = P'(-3 , 7)

4 + x = -3

    x = -3 - 4

    x = -7

5 + y = 7

     y = 7 - 5

     y = 2

Vector form : -7i + 2j

Component form : (-7 , 2)

4 0
3 years ago
Trying to help my bro solve this <br>Y= -2x+2
Alexus [3.1K]
Are you trying to graph it because it is in y=mx+b form.

3 0
4 years ago
Read 2 more answers
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Find the rate of 250mm to 75cm​
Kruka [31]
If you’re looking for the ratio:

75cm = 750mm

250:750
1:3

The answer is 1:3
6 0
2 years ago
Other questions:
  • Which distribution has a mean of 5? poisson with λ = 25 binomial with n = 200, π = .05 hypergeometric with n = 100, n = 10, s =
    5·1 answer
  • (25 points)
    7·2 answers
  • 18x-2y=26 I know I have to move 18x over but how would I do that?
    9·2 answers
  • Help soon eeeeeeeeeeeeeeeeeee
    12·2 answers
  • Solve and graph the inequality.<br><br> −x4−6≥−8
    13·2 answers
  • Find the volume of the figure. Round to nearest hundredth. *
    7·1 answer
  • 2x - 3y &gt; -12.<br> Rewrite the inequality so that y is isolated
    15·1 answer
  • Midpoint of (4,3) and (9,10)
    5·1 answer
  • Write a numerical expression that represents the total amount of money that Giorgio spent on his dinner ingredients. Use parenth
    10·2 answers
  • Please help i only have a few minutes!! what are the measurements for 1 and 2?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!