Answer:
D. 12.3 ft
Step-by-step explanation:
This problem requires the use of trigonometric ratios. This one specifically uses the cosine ratio as it provides the hypotenuse and is asking for the side that is adjacent to the angle.
cos(40°)=a/16
cos(40°)×16=a/16×16
cos(40°)×16=a
a=12.256 ft
The length of side a is D. 12.3 ft.
First we need to find k ( rate of growth)
The formula is
A=p e^kt
A future bacteria 4800
P current bacteria 4000
E constant
K rate of growth?
T time 5 hours
Plug in the formula
4800=4000 e^5k
Solve for k
4800/4000=e^5k
Take the log for both sides
Log (4800/4000)=5k×log (e)
5k=log (4800/4000)÷log (e)
K=(log(4,800÷4,000)÷log(e))÷5
k=0.03646
Now use the formula again to find how bacteria will be present after 15 Hours
A=p e^kt
A ?
P 4000
K 0.03646
E constant
T 15 hours
Plug in the formula
A=4,000×e^(0.03646×15)
A=6,911.55 round your answer to get 6912 bacteria will be present after 15 Hours
Hope it helps!
Answer:
c
Step-by-step explanation:
Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8
Answer: B. neither
<u>Step-by-step explanation:</u>
A function is even when f(x) = f(-x).
A function is odd when f(-x) = -f(x).
f(x) = 2x³ - x²
f(-x) = 2(-x)³ - (-x)²
= -2x³ - x²
f(x) = 2x³ - x² ≠ f(-x) = -2x³ - x² so it is NOT EVEN
-f(x) = -(2x³ - x²)
= -2x³ + x²
f(-x) = -2x³ - x² ≠ -f(x)= -2x³ + x² so it is NOT ODD
Therefore, it is NEITHER even nor odd.