![\bf f(x)=(x-6)e^{-3x}\\\\ -----------------------------\\\\ \cfrac{dy}{dx}=1\cdot e^{-3x}+(x-6)-3e^{-3x}\implies \cfrac{dy}{dx}=e^{-3x}[1-3(x-6)] \\\\\\ \cfrac{dy}{dx}=e^{-3x}(19-3x)\implies \cfrac{dy}{dx}=\cfrac{19-3x}{e^{3x}}](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D%28x-6%29e%5E%7B-3x%7D%5C%5C%5C%5C%0A-----------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3D1%5Ccdot%20e%5E%7B-3x%7D%2B%28x-6%29-3e%5E%7B-3x%7D%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%5B1-3%28x-6%29%5D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7Bdy%7D%7Bdx%7D%3De%5E%7B-3x%7D%2819-3x%29%5Cimplies%20%5Ccfrac%7Bdy%7D%7Bdx%7D%3D%5Ccfrac%7B19-3x%7D%7Be%5E%7B3x%7D%7D)
set the derivative to 0, solve for "x" to get any critical points
keep in mind, setting the denominator to 0, also gives us critical points, however, in this case, the denominator will never be 0, so... no critical points from there
there's only 1 critical point anyway, and do a first-derivative test on it, check a number before it and after it, to see what sign the derivative has, and thus, whether the graph is going up or down, to check for any extrema
The answer is B. 53
12 times 5 then sub 7
hope it helps
Answer:
i think the answer is b
Step-by-step explanation:
Wouldn't this be in literature?
Answer:
That would be (2,3)
Step-by-step explanation:
When we're moving left in the coordinate plane, we are subtracting the x-coordinate by how much distance we move.
In this case, 7-5=2, so the new x-coordinate is 2, but the y-coordinate doesn't change since we're going horizontally and not vertically.