Answer:
Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0
Step-by-step explanation:
According to tangent sub identity
Tan(A+B) = TanA+TanB/1-tanAtanB
Applying this in question
Tan(w+Pi) = tan(w)+tan(pi)/1-tan(w)tan(pi)
According to trig identity, tan(pi) = 0
Substitute
Tan(w+Pi) = tan(w)+0/1-tan(w)(0)
Tan(w+Pi) = tan(w)/1
Tan(w+Pi) = tan(w) (proved!)
Hence the correct option is
Rewrite tan(w + Pi) using the tangent sum identity. Then simplify the resulting expression using tan(Pi) = 0
Answer:
its c
Step-by-step explanation:

<u>Answer</u><u>:</u>
<u>
</u>
<u>Hope </u><u>you</u><u> could</u><u> get</u><u> an</u><u> idea</u><u> from</u><u> here</u><u>.</u>
<u>Doubt</u><u> clarification</u><u> </u><u>-</u><u> </u><u>use </u><u>comment</u><u> section</u><u>.</u>
Answer:
B i believe
Step-by-step explanation:
Answer: 10
Step-by-step explanation: