Answer:
The MOE for 80% confidence interval for <em>μ </em>is 5.59.
Step-by-step explanation:
The random variable <em>X</em> is defined as the number of square feet per house.
The random variable <em>X</em> is Normally distributed with mean <em>μ</em> and standard deviation <em>σ</em> = 137.
The margin of error for a (1 - <em>α</em>) % confidence interval for population mean is:

Given:
<em>n</em> = 19
<em>σ </em>= 137

Compute MOE for 80% confidence interval for <em>μ </em>as follows:

Thus, the MOE for 80% confidence interval for <em>μ </em>is 5.59.
Width = x
Length = x+18
Assuming the table is rectangular:
Area = x(x + 18)
Therefore:
x(x + 18) <span>≤ 175
x^2 + 18x </span><span>≤ 175
Using completing the square method:
x^2 + 18x + 81 </span><span>≤ 175 + 81
(x + 9)^2 </span><span>≤ 256
|x + 9| </span><span>≤ sqrt(256)
|x + 9| </span><span>≤ +-16
-16 </span>≤ x + 9 <span>≤ 16
</span>-16 - 9 ≤ x <span>≤ 16 - 9
</span>-25 ≤ x <span>≤ 7
</span><span>
But x > 0 (there are no negative measurements):
</span><span>
Therefore, the interval 0 < x </span><span>≤ 7 represents the possible widths.</span><span>
</span>
Answer: -11
Step-by-step explanation:
Answer:
r = 0.85 ft
C = 5.3407075111026 ftA = 2.2698006922186 ft²
Agenda:
r = radius
C = circumference
A = area
π = pi = 3.1415926535898
<span>√ = square root
</span>
Formula:
Circumference of a circle:
C = 2πr = πd