It should be the 2nd or 4th answer, i’m not COMPLETELY sure. I’m positive it’s the 4th answer
Domain means the values of independent variable(input) which will give defined output to the function.
Given:
The height h of a projectile is a function of the time t it is in the air. The height in feet for t seconds is given by the function

Solution:
To get defined output, the height h(t) need to be greater than or equal to zero. We need to set up an inequality and solve it to find the domain values.
![To \; find \; domain:\\\\h(t) \geq0\\\\-16t^2+96t \geq 0\\Factoring \; -16t \; in \; the \; left \; side \; of \; the \; inequality\\\\-16t(t-6) \geq 0\\Step \; 1: Find \; Boundary \; Points \; by \; setting \; up \; above \; inequality \; to \; zero.\\\\t(t-6)=0\\Use \; zero \; factor \; property \; to \; solve\\\\t=0 \; (or) \; t = 6\\\\Step \; 2: \; List \; the \; possible \; solution \; interval \; using \; boundary \; points\\(- \infty,0], \; [0, 6], \& [6, \infty)](https://tex.z-dn.net/?f=%20To%20%5C%3B%20find%20%5C%3B%20domain%3A%5C%5C%5C%5Ch%28t%29%20%5Cgeq0%5C%5C%5C%5C-16t%5E2%2B96t%20%5Cgeq%20%200%5C%5CFactoring%20%5C%3B%20-16t%20%5C%3B%20in%20%5C%3B%20the%20%5C%3B%20left%20%5C%3B%20side%20%5C%3B%20of%20%5C%3B%20the%20%5C%3B%20inequality%5C%5C%5C%5C-16t%28t-6%29%20%5Cgeq%20%200%5C%5CStep%20%5C%3B%201%3A%20Find%20%5C%3B%20Boundary%20%5C%3B%20Points%20%5C%3B%20by%20%5C%3B%20setting%20%5C%3B%20up%20%5C%3B%20above%20%5C%3B%20inequality%20%5C%3B%20to%20%5C%3B%20zero.%5C%5C%5C%5Ct%28t-6%29%3D0%5C%5CUse%20%5C%3B%20zero%20%5C%3B%20factor%20%5C%3B%20property%20%5C%3B%20to%20%5C%3B%20solve%5C%5C%5C%5Ct%3D0%20%5C%3B%20%28or%29%20%5C%3B%20t%20%3D%206%5C%5C%5C%5CStep%20%5C%3B%202%3A%20%5C%3B%20List%20%5C%3B%20the%20%5C%3B%20possible%20%20%5C%3B%20solution%20%5C%3B%20interval%20%5C%3B%20using%20%5C%3B%20boundary%20%5C%3B%20points%5C%5C%28-%20%5Cinfty%2C0%5D%2C%20%5C%3B%20%5B0%2C%206%5D%2C%20%5C%26%20%5B6%2C%20%5Cinfty%29%20)
![Step \; 3:Pick \; test \; point \; from \; each \; interval \; to \; check \; whether \\\; makes \; the \; inequality \; TRUE \; or \; FALSE\\\\When \; t = -1\\-16(-1)(-1-6) \geq 0\\-112 \geq 0 \; FALSE\\(-\infty, 0] \; is \; not \; solution\\Also \; Logically \; time \; t \; cannot \; be \; negative\\\\When \; t = 1\\-16(1)(1-6) \geq 0\\80 \geq 0 \; TRUE\\ \; [0, 6] \; is \; a \; solution\\\\When \; t = 7\\-16(7)(7-6) \geq 0\\-112 \geq 0 \; FALSE\\ \; [6, -\infty) \; is \; not \; solution](https://tex.z-dn.net/?f=%20Step%20%5C%3B%203%3APick%20%5C%3B%20test%20%5C%3B%20point%20%5C%3B%20from%20%5C%3B%20each%20%5C%3B%20interval%20%5C%3B%20to%20%5C%3B%20check%20%5C%3B%20whether%20%5C%5C%5C%3B%20makes%20%5C%3B%20the%20%5C%3B%20inequality%20%5C%3B%20TRUE%20%5C%3B%20or%20%5C%3B%20FALSE%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%20-1%5C%5C-16%28-1%29%28-1-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%28-%5Cinfty%2C%200%5D%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%5C%5CAlso%20%5C%3B%20Logically%20%5C%3B%20time%20%5C%3B%20t%20%5C%3B%20cannot%20%5C%3B%20be%20%5C%3B%20negative%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%201%5C%5C-16%281%29%281-6%29%20%5Cgeq%20%200%5C%5C80%20%5Cgeq%20%200%20%5C%3B%20TRUE%5C%5C%20%5C%3B%20%5B0%2C%206%5D%20%5C%3B%20is%20%5C%3B%20a%20%5C%3B%20solution%5C%5C%5C%5CWhen%20%5C%3B%20t%20%3D%207%5C%5C-16%287%29%287-6%29%20%5Cgeq%20%200%5C%5C-112%20%5Cgeq%20%200%20%5C%3B%20FALSE%5C%5C%20%5C%3B%20%5B6%2C%20-%5Cinfty%29%20%5C%3B%20is%20%5C%3B%20not%20%5C%3B%20solution%20)
Conclusion:
The domain of the function is the time in between 0 to 6 seconds

The height will be positive in the above interval.
Answer: the service charge per hour for premium services is $5.5
the service charge per hour for regular services is $3
Step-by-step explanation:
Let x represent the service charge per hour for premium services.
Let y represent the service charge per hour for regular services.
One customer was charged $38 after spending 2 h in premium areas and 9 regular hours. It means that
2x + 9y = 38- - - - - - - - - - - 1
Another customer spent 3 h in premium areas and 6 regular hours and was charged $34.50. It means that
3x + 6y = 34.5- - - - - - - - - - -2
We would eliminate x by multiplying equation 1 by 3 and equation 2 by 2. It becomes
6x + 27y = 114
6x + 12y = 69
Subtracting, it becomes
15y = 45
y = 45/15
y = 3
Substituting y = 3 into equation 1, it becomes
2x + 9 × 3 = 38
2x + 27 = 38
2x = 38 - 27 = 11
x = 11/2 = 5.5
Answer:
W = -3
Step-by-step explanation:
The answer to the question is 0