1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
3 years ago
7

7 less than two times the sum of 6 and a

Mathematics
1 answer:
Sophie [7]3 years ago
3 0

Answer:

(2(6+a))-7

That is your answer!

You might be interested in
Solve the equation by using the quadratic formula.
Luda [366]

Answer:

The answer is B

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Whats the equation for this​
yawa3891 [41]

Answer:

x^2 + y^2 + 4x + 4y  = -119/16

Step-by-step explanation:

The axes x and y are calibrated in 0.25

If the circle is carefully considered, the radius r of the circle is:

r = -1.25 - (-2)

r = 0.75 units

The equation of a circle is given by:

(x - a)^2 + (y - b)^2 = r^2

The center of the circle (a, b) = (-2, -2)

Substituting  (a, b) = (-2, -2) and r = 0.75 into the given equation:

(x - (-2))^2 + (y - (-2))^2 = (3/4)^2\\\\(x + 2)^2 + (y + 2)^2 = (3/4)^2\\\\x^2 + 4x + 4 + y^2 + 4y + 4 = 9/16\\\\x^2 + y^2 + 4x + 4y + 8 = 9/16\\\\16x^2 + 16y^2 + 64x + 64y + 128 = 9\\\\16x^2 + 16y^2 + 64x + 64y  = -119\\\\x^2 + y^2 + 4x + 4y  = -119/16\\

5 0
3 years ago
a pedestal in a craft store is in the shape of a triangular prism. The bases are right triangles with side lengths of 12 centime
Lostsunrise [7]
You found your area wrong as soon as you gt 192 you multiply by 0.50 getting 96 then you divide by 20 to get 4.8 centimeters
4 0
3 years ago
A pitcher can hold 8 times as much as glass. The pitcher hold 64 ounces
Harlamova29_29 [7]

Answer:

The glass can hold 8. (I think)

Step-by-step explanation:

8 0
3 years ago
PLEASE HELP ME GUYS OR I WONT PASS <br>this calculus!!!!​
KonstantinChe [14]

Answer:

b.  \displaystyle \frac{1}{2}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                       \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle H(x) = \sqrt[3]{F(x)}<em />

<em />

<u>Step 2: Differentiate</u>

  1. Rewrite function [Exponential Rule - Root Rewrite]:                                      \displaystyle H(x) = [F(x)]^\bigg{\frac{1}{3}}
  2. Chain Rule:                                                                                                        \displaystyle H'(x) = \frac{d}{dx} \bigg[ [F(x)]^\bigg{\frac{1}{3}} \bigg] \cdot \frac{d}{dx}[F(x)]
  3. Basic Power Rule:                                                                                             \displaystyle H'(x) = \frac{1}{3}[F(x)]^\bigg{\frac{1}{3} - 1} \cdot F'(x)
  4. Simplify:                                                                                                             \displaystyle H'(x) = \frac{F'(x)}{3}[F(x)]^\bigg{\frac{-2}{3}}
  5. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle H'(x) = \frac{F'(x)}{3[F(x)]^\bigg{\frac{2}{3}}}

<u>Step 3: Evaluate</u>

  1. Substitute in <em>x</em> [Derivative]:                                                                              \displaystyle H'(5) = \frac{F'(5)}{3[F(5)]^\bigg{\frac{2}{3}}}
  2. Substitute in function values:                                                                          \displaystyle H'(5) = \frac{6}{3(8)^\bigg{\frac{2}{3}}}
  3. Exponents:                                                                                                        \displaystyle H'(5) = \frac{6}{3(4)}
  4. Multiply:                                                                                                             \displaystyle H'(5) = \frac{6}{12}
  5. Simplify:                                                                                                             \displaystyle H'(5) = \frac{1}{2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

5 0
3 years ago
Other questions:
  • What function represents this arithmetic sequence? 32, 41, 50, . . .
    5·1 answer
  • Three freshmen, 3 sophomores, 3 juniors, and 3 seniors are participating on the debate team. The team's captain is randomly sele
    7·2 answers
  • Confused plz help! will mark!!
    11·2 answers
  • Y2 – 3y + 2 = 0 solve buy factoring
    9·1 answer
  • How do you simply these expressions?<br> a. (1/2)^-3 b. (3/5x)^-1
    13·1 answer
  • 3x^2y^3+5x^3y^3-6+x^3y^2-2
    12·1 answer
  • Can someone pleaseee help me its due soon :((<br> I’ll mark as brainliest
    11·2 answers
  • Joey is building a doghouse. He measures the lengths of two sides and the hypotenuse to make sure the boards create a right tria
    12·1 answer
  • What is the image of (2, 1) after a reflection over the x-axis?
    7·1 answer
  • Could someone please solve this compound inequality?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!