Answer:
Step-by-step explanation:
The rate of change of the function f(x) from point to point can be calculated using formula
Given
From the graph of the function
So, the rate of change is
Answer:
yes
Step-by-step explanation:
The line intersects each parabola in one point, so is tangent to both.
__
For the first parabola, the point of intersection is ...
y^2 = 4(-y-1)
y^2 +4y +4 = 0
(y+2)^2 = 0
y = -2 . . . . . . . . one solution only
x = -(-2)-1 = 1
The point of intersection is (1, -2).
__
For the second parabola, the equation is the same, but with x and y interchanged:
x^2 = 4(-x-1)
(x +2)^2 = 0
x = -2, y = 1 . . . . . one point of intersection only
___
If the line is not parallel to the axis of symmetry, it is tangent if there is only one point of intersection. Here the line x+y+1=0 is tangent to both y^2=4x and x^2=4y.
_____
Another way to consider this is to look at the two parabolas as mirror images of each other across the line y=x. The given line is perpendicular to that line of reflection, so if it is tangent to one parabola, it is tangent to both.
The answer is an equilateral triangle
N + 32 = 60
First, so basically, we are trying to find a number that can add up with 32 to equal 60. The easiest route to solve this is to simply take 32 and subtract it from 60.
Second, once we subtract, we will be given the answer and know what 'n' is. Subtract 60 - 32 to get your answer. 60 - 32 = 28
Third, know that we know that the answer to 'n' is 28, we can check it by adding 28 + 32. Your answer should be 60, and 28 is the correct answer.
Answer:
Answer:
x = 5/2 , y = -7/2
Step-by-step explanation:
<em>r's</em><em> your</em><em> solution</em>
<em> </em><em> </em><em>=</em><em>></em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>finding</em><em> </em><em>midpoint</em><em> </em><em>=</em><em>.</em><em>(</em><em> </em><em>X1</em><em> </em><em>+</em><em> </em><em>X</em><em>2/</em><em>)</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>(</em><em>Y1+</em><em>Y2)</em><em>/</em><em>2</em>
<em>=</em><em>></em><em> </em><em>putting</em><em> </em><em>the </em><em>value</em><em> </em><em>of </em><em>in </em><em>formula</em>
<em> </em><em> </em><em>=</em><em>></em><em> </em><em>x=</em><em> </em><em> </em><em>4</em><em>+</em><em>1</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>y </em><em>=</em><em> </em><em>-</em><em>1</em><em>-</em><em>6</em><em>/</em><em>2</em>
<em>=</em><em>></em><em> </em><em>x </em><em>=</em><em> </em><em>5</em><em>/</em><em>2</em><em> </em><em>,</em><em> </em><em>y </em><em>=</em><em> </em><em>-</em><em>7</em><em>/</em><em>2</em>
<em>hope</em><em> it</em><em> helps</em>