1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SOVA2 [1]
3 years ago
7

a slitter assembly contains 48 blades five blades are selected at random and evaluated each day for sharpness if any dull blade

is found the assembly is replaced with a newly sharpened set of blades if 10 of the blades in an assembly are dull, what is the probability that the assembly is replaced the first day it is evaluated?
Mathematics
1 answer:
son4ous [18]3 years ago
5 0

Answer:

P(at least 1 dull blade)=0.7068

Step-by-step explanation:

I hope this helps.

This is what it's called dependent event probability, with the added condition that at least 1 out of 5 blades picked is dull, because from your selection of 5, you only need one defective to decide on replacing all.

So if you look at this from another perspective, you have only one event that makes it so you don't change the blades: that 5 out 5 blades picked are sharp. You also know that the probability of changing the blades plus the probability of not changing them is equal to 100%, because that involves all the events possible.

P(at least 1 dull blade out of 5)+Probability(no dull blades out of 5)=1

P(at least 1 dull blade)=1-P(no dull blades)

But the event of picking one blade is dependent of the previous picking, meaning there is no chance of picking the same blade twice.

So you have 38/48 on getting a sharp one on your first pick, then 37/47 (since you remove 1 sharp from the possibilities, and 1 from the whole lot), and so on.

Also since are consecutive events, you need to multiply the events.

The probability that the assembly is replaced the first day is:

P(at least 1 dull blade)=1-P(no dull blades)

P(at least 1 dull blade)=1-(\frac{38}{48}* \frac{37}{47} *\frac{36}{46}*\frac{35}{45}*\frac{34}{44})

P(at least 1 dull blade)=1-0.2931

P(at least 1 dull blade)=0.7068

You might be interested in
Check out attachment:) I don't understand how do you find out the length ?? pls help with explanation thx
hjlf

Answer:

x=3.89

Step-by-step explanation:

I'll go in depth for you.

Before we figure out what we do, let understand what we know about this triangle.

  • We know that both triangles have a angle that measure 27°.
  • We also know EH=5
  • FG=9
  • ZG=7
  • We need to know how to find EZ

Notice how line EG and HF intersect at Angle Z. We know that if two lines intersect at an angle, it form angles called vertical angles. This means that the two angles that are vertical to each other are congruent.

This means that angle Z in both triangles both measure the same.

Now since both triangles have 2 congruent corresponding angles, we can say that the <em>Triangles</em><em> </em><em>are</em><em> </em><em>Similar</em><em> </em><em>due</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>Angle-Angle</em><em> </em><em>Postulate</em><em>.</em>

<em>"</em><em>If</em><em> </em><em>two</em><em> </em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>of</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>congruent</em><em>,</em><em> </em><em>then</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>.</em><em>"</em>

<em>What</em><em> </em><em>is</em><em> </em><em>mean</em><em> </em><em>when</em><em> </em><em>Triangles</em><em> </em><em>are</em><em> </em><em>similar</em><em>?</em><em> </em>

<em>It</em><em> </em><em>means</em><em> </em><em>that</em><em> </em><em>the</em><em> </em><em>similar</em><em> </em><em>triangles</em><em> </em><em>corresponding</em><em> </em><em>angles</em><em> </em><em>are</em><em> </em><em>equal</em><em> </em><em>a</em><em>n</em><em>d</em><em> </em><em>their</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em><em>in</em><em> </em><em>proportion</em><em>.</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>are</em><em> </em>

<em>EH</em><em> </em><em>and</em><em> </em><em>GF</em>

<em>EZ</em><em> </em><em>and</em><em> </em><em>ZG</em>

<em>HZ</em><em> </em><em>and</em><em> </em><em>HF</em><em>.</em>

<em>Our</em><em> </em><em>proportion</em><em> </em><em>formula</em><em> </em><em>for</em><em> </em><em>similar</em><em> </em><em>triangle</em><em>s</em><em> </em><em>is</em><em> </em>

<em>Any</em><em> </em><em>two</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>first</em><em> </em><em>triangle</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>must</em><em> </em><em>equal</em><em> </em><em>the</em><em> </em><em>two</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>second</em><em> </em><em>triangles</em><em> </em><em>divided</em><em> </em><em>by</em><em> </em><em>each</em><em> </em><em>other</em><em> </em><em>respectively</em><em>.</em>

<em>We</em><em> </em><em>know</em><em> </em><em>FG</em><em> </em><em>and</em><em> </em><em>ZG</em><em> </em><em>so</em><em> </em><em>let</em><em> </em><em>set</em><em> </em><em>up</em><em> </em><em>our</em><em> </em><em>first</em><em> </em><em>fraction</em>

<em>\frac{fg}{zg}</em>

<em>The</em><em> </em><em>corresponding</em><em> </em><em>sides</em><em> </em><em>of</em><em> </em><em>both</em><em> </em><em>are</em><em> </em>

  • <em>EH</em><em> </em><em>and</em><em> </em><em>EZ</em><em> </em><em>respectively</em><em> </em><em> </em><em>so</em><em> </em><em>our</em><em> </em><em>proportion</em><em> </em><em> </em><em>looks</em><em> </em><em>like</em>
  • <em>\frac{fg}{zg}  =  \frac{eh}{ez}</em>
  • <em>Plug</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>values</em><em> </em><em>for</em><em> </em><em>each</em><em>.</em><em> </em><em>Let</em><em> </em><em>x</em><em> </em><em>represent</em><em> </em><em>the</em><em> </em><em>value</em><em> </em><em>of</em><em> </em><em>EZ</em>
  • <em>\frac{9}{7}  =  \frac{5}{x}</em>
  • <em>Cross</em><em> </em><em>Multiply</em>
  • <em>9x = 35</em>
  • <em>x = 3 \frac{8}{9}  = 3.89</em>
  • <em>So</em><em> </em><em>x</em><em>=</em><em>3</em><em>.</em><em>8</em><em>9</em>
3 0
3 years ago
18(10) pls help- ucrfyfdvdvjbjfgnfbcdsxscjfgjnhbfxsaxhh Th
Elden [556K]
Uhhh 18 times 10 = 180
7 0
2 years ago
1. Consider a lottery with three possible outcomes:-$125 will be received with probability 0.2-$100 will be received with probab
Norma-Jean [14]

Answer:

The expected value of the lottery is $80

Step-by-step explanation:

To get the expected value, we have to multiply each outcome by its probability

Then we proceed to add up all of these to get the expected value of the lottery

we have this as ;;

125(0.2) + 100(0.3) + 50(0.5)

= 25 + 30 + 25 = $80

3 0
3 years ago
What’s the area of the shape
maxonik [38]

Answer:

19.63

Step-by-step explanation:

To find the area of a circle you can use the formula πr². The diameter (10) is twice the radius. So, the radius is 5. 5² = 25. 25x π =25π. Then you must divide by 4 because the shape is 1/4 a circle.

Hope this helps ;)

3 0
3 years ago
7/10 is blank pieces of the whole
solniwko [45]
7/10 is 7 pieces of the whole. The whole would be cut into 10 pieces and you have 7 of the 10...7/10.
5 0
3 years ago
Other questions:
  • Which statement about histograms is true?
    14·2 answers
  • Simplify 24+4x-6(2x-5)
    12·2 answers
  • What is the solution to the following equation?
    15·1 answer
  • Use the diagram and given information to answer the questions and prove the statement.
    8·1 answer
  • Necesito un problema para esta ecuación <br><br> (m) (m-2) =48
    14·1 answer
  • You have a small bag of candy-coated chocolates that melt in our mouth; three are red, four are yellow, tow are green, and five
    6·1 answer
  • Determine the measure of the third angle. * o 48° O 62° O 70° 132 180°
    9·1 answer
  • Plz answer asap im goin broke her
    11·2 answers
  • A whole circle is 100 of a circle what percent of a circle is 1/7 of a circle
    11·1 answer
  • A shoe store marks up its merchandise by 8%. What was the selling price of a pair of shoes whose wholesale price is $24.50? Show
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!