Answer:
Step-by-step explanation:
1 - a
2 - c
3 - b
Problem 1
x = measure of angle N
2x = measure of angle M, twice as large as N
3(2x) = 6x = measure of angle O, three times as large as M
The three angles add to 180 which is true of any triangle.
M+N+O = 180
x+2x+6x = 180
9x = 180
x = 180/9
x = 20 is the measure of angle N
Use this x value to find that 2x = 2*20 = 40 and 6x = 6*20 = 120 to represent the measures of angles M and O in that order.
<h3>Answers:</h3>
- Angle M = 40 degrees
- Angle N = 20 degrees
- Angle O = 120 degrees
====================================================
Problem 2
n = number of sides
S = sum of the interior angles of a polygon with n sides
S = 180(n-2)
2700 = 180(n-2)
n-2 = 2700/180
n-2 = 15
n = 15+2
n = 17
<h3>Answer: 17 sides</h3>
====================================================
Problem 3
x = smaller acute angle
3x = larger acute angle, three times as large
For any right triangle, the two acute angles always add to 90.
x+3x = 90
4x = 90
x = 90/4
x = 22.5
This leads to 3x = 3*22.5 = 67.5
<h3>Answers:</h3>
- Smaller acute angle = 22.5 degrees
- Larger acute angle = 67.5 degrees
<span>-6x - 2 = 40
-6x = 42
x = -7
..................</span>
First, you need to write to expressions to model each situation:
Plan A: 10+0.15x
Plan B: 30+0.1x
Next, set the expressions equal to each other and solve for x:
10+0.15x=30+0.1x
<em>*Subtract 0.1x from both sides to isolate the variable*</em>
10+0.05x=30
<em>*Subtract 10 from both sides*</em>
0.05x=20
<em>*Divide both sides by 0.05*</em>
x=400
The plans would have the same cost after 400 minutes of calls.
To find how much money the plans cost at 400 minutes, plug 400 into either expression. We'll use Plan A:
10+0.15(400)
10+60
70
The plans will cost $70.
Hope this helps!