Answer:
Let x be the number of regular health bars you buy and y the number of strawberry health bars you buy. Then:
0.75x+1.25y=3.75
x+y>=3
Step-by-step explanation:
For the first equation, we have to assume that you will spend all of your money, otherwise it becomes an inequation. The money you spend on regular bars is 0.75x dollars and the money you spend on strawberry bars is 1.25y, so if you spend your 3.75 dollars on the bars, then 0.75x+1.25y=3.75.
For the second, you will always buy x+y health bars, regular and strawberry. There isn't enough information to make this into a equation, the only thing we can deduce is the inequation x+y>=3.
If we also assume that x and y are integers (we can't buy half-bars or one-fourth of a bar) then the minimum number of bars we can buy is 3 (3 strawberry bars) and the maximum is 5 bars (5 regular bars). x+y must be an integer too, so the possibilities for the second equation are x+y=3, x+y=4 and x+y=5. There is a finite number of solutions in any case.
Answer:
The area of the smaller triangle is 75.
Step-by-step explanation:
Here, the ratio of the sides of the similar triangle are 5 : 6
The area if the larger triangle = 108
let us assume that the area of the smaller triangle = m
By the Theorem:
In two similar triangles, the ratio of the areas of similar triangles is the square of the ratio of their sides.
Similarly, here
= \frac{m}{108}[/tex]
⇒
or, 
⇒ m = 75
Hence, the area of the smaller triangle is 75.
Answer:
height = 5cm
Step-by-step explanation:
Volume of the cuboid = length x breadth x height
7500 = 25 x 60 x height
height = 7500 / 1500
height = 5
Answer:
D
Step-by-step explanation:
Because I know
Answer:
A.) Even.
Step-by-step explanation:
If a function is an even function, then
F(-x) = f(x)
Also, if a function is an odd function, then, f(-x) = -f(x)
You are given the below function
f(x) = 1 + 3x^2 − x^4
Let x = 2
Substitute 2 for x in the function
F(x) = 1 + 3(2)^2 - (2)^4
F(x) = 1 + 3(4) - 16
F(x) = 1 + 12 - 16
F(x) = -3
Also, Substitute -2 for x in the function
F(x) = 1 + 3(-2)^2 - (-2)^4
F(x) = 1 + 3(4) - 16
F(x) = 1 + 12 - 16
F(x) = -3
Since f(-x) = f(x), we can conclude that
F(x) = 1 + 3x^2 - x^4 is even