Answer:
A. 4 in.
Step-by-step explanation:
= 3 +
22 = 2 + 2[3 + ] ↷
22 = 2 + 6 + 2
22 = 6 + 4
- 6 -6
-------------
16 = 4
4 =
I am joyous to assist you anytime.
Answer:
They can make 25 cakes
Step-by-step explanation:
75/3=25
Answer:
3.83
Step-by-step explanation:
Mean of x = Σx / n
Mean of x = (14 + 19 + 13 + 6 + 9) / 5 = 12.2
Sum of square (SS) :
(14-12.2)^2 + (19-12.2)^2 + (13-12.2)^2 + (6-12.2)^2 + (9-12.2)^2 = 98.8
Mean of y = Σy / n
Mean of y = (101 + 89 + 48 + 21 + 47) / 5 = 61.2
Σ(y - ybar)² = (101-61.2)^2 + (89-61.2)^2 + (48-61.2)^2 + (21-61.2)^2 + (47-61.2)^2 = 4348.8
df = n - 2 = 5 - 2 = 3
Σ(y - ybar)² / df = 4348.8 / 3 = 1449.6
√(Σ(y - ybar)² / df) = √1449.6 = 38.074
Standard Error = √(Σ(y - ybar)² / df) / √SS
Standard Error = 38.074 / √98.8
Standard Error = 3.83
Answer:
The rocket hits the ground at a time of 11.59 seconds.
Step-by-step explanation:
The height of the rocket, after x seconds, is given by the following equation:

It hits the ground when
, so we have to find x for which
, which is a quadratic equation.
Finding the roots of a quadratic equation:
Given a second order polynomial expressed by the following equation:
.
This polynomial has roots
such that
, given by the following formulas:



In this question:


So




Since time is a positive measure, the rocket hits the ground at a time of 11.59 seconds.
25/3 ft/s is speed of the tip of his shadow moving when a man is 40 ft from the pole given that a street light is mounted at the top of a 15-ft-tall pole and the man is 6 ft tall who is walking away from the pole with a speed of 5 ft/s along a straight path. This can be obtained by considering this as a right angled triangle.
<h3>How fast is the tip of his shadow moving?</h3>
Let x be the length between man and the pole, y be the distance between the tip of the shadow and the pole.
Then y - x will be the length between the man and the tip of the shadow.
Since two triangles are similar, we can write

⇒15(y-x) = 6y
15 y - 15 x = 6y
9y = 15x
y = 15/9 x
y = 5/3 x
Differentiate both sides
dy/dt = 5/3 dx/dt
dy/dt is the speed of the tip of the shadow, dx/dt is the speed of the man.
Given that dx/dt = 5 ft/s
Thus dy/dt = (5/3)×5 ft/s
dy/dt = 25/3 ft/s
Hence 25/3 ft/s is speed of the tip of his shadow moving when a man is 40 ft from the pole given that a street light is mounted at the top of a 15-ft-tall pole and the man is 6 ft tall who is walking away from the pole with a speed of 5 ft/s along a straight path.
Learn more about similar triangles here:
brainly.com/question/8691470
#SPJ4