Answer:
<h2>3(cos 336 + i sin 336)</h2>
Step-by-step explanation:
Fifth root of 243 = 3,
Suppose r( cos Ф + i sinФ) is the fifth root of 243(cos 240 + i sin 240),
then r^5( cos Ф + i sin Ф )^5 = 243(cos 240 + i sin 240).
Equating equal parts and using de Moivre's theorem:
r^5 =243 and cos 5Ф + i sin 5Ф = cos 240 + i sin 240
r = 3 and 5Ф = 240 +360p so Ф = 48 + 72p
So Ф = 48, 120, 192, 264, 336 for 48 ≤ Ф < 360
So there are 5 distinct solutions given by:
3(cos 48 + i sin 48),
3(cos 120 + i sin 120),
3(cos 192 + i sin 192),
3(cos 264 + i sin 264),
3(cos 336 + i sin 336)
Answer:
378.5 or just 378
Step-by-step explanation:
This is a linear model with x representing the number of generations that's gone by, y is the number of butterflies after x number of generations has gone by, and the 350 represents the number of butterflies initially (before any time has gone by. When x = 0, y = 350 so that's the y-intercept of our equation.)
The form for a linear equation is y = mx + b, where m is the rate of change and b is the y-intercept, the initial amount when x = 0.
Our rate of change is 1.5 and the initial amount of butterflies is 350, so filling in the equation we get a model of y = 1.5x + 350.
If we want y when x = 19, plug 19 in for x and solve for y:
y = 1.5(19) + 350
y = 378.5
Since we can't have .5 of a butterfly we will round down to 378
Answer:
648pi
Step-by-step explanation:
V=pi*r^2*h
V=pi*9^2*8
V=pi*81*8
V=648pi
Answer:
The odds to get a blackjack (natural) as arrangement: 128 / 2652 = . 0483 = 4.83%. 4.83% is equivalent to about 1 in 21 blackjack hands.
You should ender 0.5 for a half note, 0.25 for a quater note, 0.125 for a eigth note, 0.0625 for a sixteenth note.