Answer:
(x + 6, y + 0), 180° rotation, reflection over the x‐axis
Step-by-step explanation:
The answer can be found out simply , a trapezoid has its horizontal sides usually parallel meanwhile the vertical sides are not parallel.
The horizontal parallel sides are on the x-axis.
Reflection over y- axis would leave the trapezoid in a vertical position such that the trapezoid ABCD won't be carried on the transformed trapezoid as shown in figure.
So option 1 and 2 are removed.
Now, a 90 degree rotation would leave the trapezoid in a vertical position again so its not suitable again.
In,The final option (x + 6, y + 0), 180° rotation, reflection over the x‐axis, x+6 would allow the parallel sides to increase in value hence the trapezoid would increase in size,
180 degree rotation would leave the trapezoid in an opposite position and reflection over x-axis would bring it below the Original trapezoid. Hence, transformed trapezoid A`B`C`D` would carry original trapezoid ABCD onto itself
Answer:
y = 4 or y = 6
Step-by-step explanation:
2log4y - log4 (5y - 12) = 1/2
2log_4(y) - log_4(5y-12) = log_4(2) apply law of logarithms
log_4(y^2) + log_4(1/(5y-12)) = log_4(/2) apply law of logarithms
log_4(y^2/(5y-12)) = log_4(2) remove logarithm
y^2/(5y-12) = 2 cross multiply
y^2 = 10y-24 rearrange and factor
y^2 - 10y + 24 = 0
(y-4)(y-6) = 0
y= 4 or y=6
Answer:
Explanation:
Use the Pythagorean theorem (
a
2
+
b
2
=
c
2
)
Lets label the right triangle such that:
a
=
12
b
=
16
c
=
x
Thus,
12
2
+
16
2
=
x
2
144
+
256
=
x
2
400
=
x
2
√
400
=
x
20
=
x
So our missing side,
c
is
20
We can now say that the sides of our triangle are
12
,
16
,
20
I've included a link that lists a couple of Pythagorean triples (a couple because they are infinitely many).
Step-by-step explanation:
Hope it helpful
Answer:
a)g: 3x + 4y = 10 b) a:x+y = 5 c) c: 3x + 4y = 10
h: 6x + 8y = 5 b:2x + 3y = 8 d: 6x + 8y = 5
Step-by-step explanation:
a) Has no solution
g: 3x + 4y = 10
h: 6x + 8y = 5
Above Equations gives you parallel lines refer attachment
b) has exactly one solution
a:x+y = 5
b:2x + 3y = 8
Above Equations gives you intersecting lines refer attachment
c) has infinitely many solutions
c: 3x + 4y = 10
d: 6x + 8y = 5
Above Equations gives you collinear lines refer attachment
i) if we add x + 2y = 1 to equation x + y = 5 to make an inconsistent system.
ii) if we add x + 2y = 3 to equation x + y = 5 to create infinitely system.
iii) if we add x + 4y = 1 to equation x + y = 5 to create infinitely system.
iv) if we add to x + y =5 equation x + y = 5 to change the unique solution you had to a different unique solution
nice day folks eeeeeeeeeeeeeeeee