Answer:
The integers are 4 and 7 or -2 and 1.
Step-by-step explanation:
You can make a system of equations with the description of the two integers.
1. x = y + 3
2. 2x + 2 = y^2
The simplest and the fastest way to solve this system in this case is substitution. You can substitute x for y + 3 in the second equation.
1. x = y + 3
2. 2(y + 3) + 2 = y^2
Now simplify and solve the second one. For convenience, I will just disregard the first equation for now.
2y + 6 + 2 = y^2
y^2 - 2y - 8 = 0
You can factor this equation to solve for y.
(y - 4) (y + 2) = 0
y = 4, y = -2
Now we can substitute the value of y for x in the first equation.
x = 7, x = 1
The anwser is 90 because its 90 degree angle
Answer:
a:c = 35:24
a:c = 20:27
a:c = 35:22
a:c = 28:27
Step-by-step explanation:
a:b = 7:3
Using cross products
3a = 7b
Divide by 7
3a/7 = b
Now we want
8b = 5c
Substitute in 3a/7 for b
8 (3a/7) = 5c
24/7a = 5c
Multiply by 7
24/7a *7 = 5*7c
24a = 35c
Divide by c
24 a/c = 35
Divide by 24
a/c = 35/24
a:c = 35:24
a:b = 4:9
Using cross products
9a = 4b
Divide by 4
9a/4 = b
Now we want
3b = 5c
Substitute in 9a/4 for b
3 (9a/4) = 5c
27/4a = 5c
Multiply by 4
27/4a *4 = 5*4c
27a = 20c
Divide by c
27 a/c = 20
Divide by 27
a/c = 20/27
a:c = 20:27
b:c = 5:11
Using cross products
11b = 5c
Divide by 11
b = 5c/11
Now we want
2a = 7b
Substitute in 5c/11 for b
2a = 7(5c/11)
2a = 35c/11
Multiply by 11
2a*11 = 35c
22a = 35c
Divide by c
22 a/c = 35
Divide by 22
a/c = 35/22
a:c = 35:22
b:c = 14:3
Using cross products
3b = 14c
Divide by 3
b = 14c/3
Now we want
9a = 2b
Substitute in 14c/3 for b
9a = 2(14c/3)
9a = 28c/3
Multiply by 3
9a*3 = 28c
27a = 28c
Divide by c
27 a/c = 28
Divide by 27
a/c = 28/27
a:c = 28:27
Since, a regular hexagon has an area of 750.8 square cm and The side length is 17 cm.
We have to find the apothem of the regular hexagon.
The formula for determining the apothem of regular hexagon is
, where 's' is any side length of regular hexagon and 'n' is the number of sides of regular hexagon.
So, apothem = 
= 
= 
= 14.78 units
Therefore, the measure of apothem of the regular hexagon is 14.7 units.
Option B is the correct answer.
The answer is 15.25 cubic inches