1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tensa zangetsu [6.8K]
3 years ago
8

Identify the two tables which represent quadratic relationships

Mathematics
1 answer:
madam [21]3 years ago
6 0

Answer:

Option (4) and Option (5)

Step-by-step explanation:

By calculating the second difference, if the second difference in a table is equal, table will represent the quadratic relationship.

In the given option, we analyze that table given in Option (4) will represent the quadratic relationship.

x             y             Ist difference (y_2-y_1)         IInd difference

0            4                      -                                             -

1            -4             -4 - (4) = -8                                     -    

2           -4             -4 - (-4) = 0                              0 - (-8) = 8

3            4              4 - (-4) = 8                                  8 - 0 = 8

Second difference of the terms in y are the same as 8.

Therefore, table of Option (4) represents the quadratic relationship.

Similarly, in Option (5) we will calculate the second difference of y terms.

x            y            Ist difference     IInd difference

0          -4                    -                            -

1           -8             -8 - (-4) = -4                 -

2          -10           -10 - (-8) = -2        -2 - (-4) = 2      

3          -10           -10 - (-10) = 0        0 - (-2) = 2

Here the second difference is same as 2.

Therefore, table of Option (5) will represent the quadratic relationship.

You might be interested in
4x - 3y = 12 without graph​
Maru [420]

Answer:

Make it an y=mx+b equation. -3y=-4x+12

Divide everything by -3

Answer is y=4/3x-4

Step-by-step explanation:

3 0
3 years ago
∠C and ∠D are vertical angles.
denis-greek [22]

Vertical angles is the same angle, but we don't know "x". If you look in a way. We can do 180=(3x+80).

100=3x

100/3 = x

Now we have the answer for x we plug it in to get the answer.

3(100/3) + 80 =<D

<D = <C

8 0
2 years ago
Read 2 more answers
Factor completely <br> 4(x+1)^2/3 + 12(x+1)^-1/3
wolverine [178]
\bf a^{\frac{{ n}}{{ m}}} \implies  \sqrt[{ m}]{a^{ n}} \qquad \qquad&#10;\sqrt[{ m}]{a^{ n}}\implies a^{\frac{{ n}}{{ m}}}\\\\&#10;\left.\qquad \qquad \right.\textit{negative exponents}\\\\&#10;a^{-{ n}} \implies \cfrac{1}{a^{ n}}&#10;\qquad \qquad&#10;\cfrac{1}{a^{ n}}\implies a^{-{ n}}&#10;\qquad \qquad &#10;a^{{{  n}}}\implies \cfrac{1}{a^{-{{  n}}}}&#10;\\\\&#10;-------------------------------\\\\&#10;%4(x+1)^2/3 + 12(x+1)^-1/3&#10;4(x+1)^{\frac{2}{3}}+12(x+1)^{-\frac{1}{3}}\implies 4(x+1)^{\frac{2}{3}}+12\cfrac{1}{(x+1)^{\frac{1}{3}}}&#10;\\\\\\

\bf 4(x+1)^{\frac{2}{3}}+\cfrac{12}{(x+1)^{\frac{1}{3}}}\impliedby \textit{so, our LCD is }(x+1)^{\frac{1}{3}}&#10;\\\\\\&#10;\cfrac{4(x+1)^{\frac{2}{3}}\cdot (x+1)^{\frac{1}{3}}+12}{(x+1)^{\frac{1}{3}}}\implies \cfrac{4(x+1)^{\frac{2}{3}+\frac{1}{3}}+12}{(x+1)^{\frac{1}{3}}}&#10;\\\\\\&#10;\cfrac{4(x+1)^{\frac{3}{3}}+12}{(x+1)^{\frac{1}{3}}}\implies \cfrac{4(x+1)+12}{(x+1)^{\frac{1}{3}}}\implies \cfrac{4x+4+12}{(x+1)^{\frac{1}{3}}}&#10;\\\\\\&#10;\cfrac{4x+16}{(x+1)^{\frac{1}{3}}}\implies \cfrac{4(x+4)}{\sqrt[3]{x+1}}
3 0
3 years ago
Read 2 more answers
Please helpppppp
melomori [17]

Given Information:

Years = t = 35

Semi-annual deposits = P = $2,000

Compounding semi-annually  = n = 2

Interest rate = i = 6.5%  

Required Information

Accumulated amount  = A = ?

Answer:

Accumulated amount  = $515,827

Step-by-step explanation:

The future value of amount earned over period of 35 years and interest rate 6.5% with semi-annual deposits is given by

FV = PMT * ((1 + i/n)^nt - 1)/(i/n))

Where  

n = 2

i = 0.065

t = 35

FV = 2000*((1 + 0.065/2)^2*35 - 1)/(0.065/2))

FV = 2,000*(257.91)

FV ≈ $515,827

Therefore, Anthony will have an amount of $515,827 when he retires in 35 years.

6 0
3 years ago
X^2 + x^2=6^2 what is x​
nikitadnepr [17]

Answer:

x = ±3 sqrt(2)

Step-by-step explanation:

x^2 + x^2=6^2

Combine like terms

2x^2 = 6^2

Divide each side by 2

x^2 = * 6^2/2

Take the square root of each side

sqrt(x^2) =± sqrt(  6^2/2)

Remember that sqrt(a/b) = ±sqrt(a ) /sqrt(b)

x = ±sqrt(6^2)/sqrt(2)

x = ±6 /sqrt(2)

We do not leave square roots in the denominator, so we multiply the top and bottom by sqrt(2)

x = ±6 /sqrt(2) * sqrt(2)/ sqrt(2)

x = ±6 *sqrt(2) /( sqrt(2)*sqrt(2))

x =  ±6 sqrt(2) /(2)

x = ±3 sqrt(2)

5 0
3 years ago
Read 2 more answers
Other questions:
  • What is 4x-6y=12 and -2x+3y=-6 in slope intercept form
    7·1 answer
  • Simplify.<br><br> 8(10m)<br><br> 18m<br> 810m<br> 80 + m<br> 80m
    9·1 answer
  • What is the sum of -2.2 and 0.44?
    5·1 answer
  • 54 + 31 + 7n2 - n2=<br> = [?]n2 + [ ]
    15·1 answer
  • Louise gave her pet hamster 8.3 ounces of water one week and another 7.75 ounces the next week. What was the total amount of wat
    7·2 answers
  • What are fractions? Plz help
    10·2 answers
  • Solve this problem: <br> 5X +8 = 53
    7·2 answers
  • Jerome's average balance checking account pays simple interest of 7. 2% annually, and he made $5. 28 in interest last month. Wha
    11·1 answer
  • Is 5z,5x,5y a like terms or unlike terms
    9·1 answer
  • 2. Which pair of triangles are similar?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!