9514 1404 393
Answer:
1) f⁻¹(x) = 6 ± 2√(x -1)
3) y = (x +4)² -2
5) y = (x -4)³ -4
Step-by-step explanation:
In general, swap x and y, then solve for y. Quadratics, as in the first problem, do not have an inverse function: the inverse relation is double-valued, unless the domain is restricted. Here, we're just going to consider these to be "solve for ..." problems, without too much concern for domain or range.
__
1) x = f(y)
x = (1/4)(y -6)² +1
4(x -1) = (y-6)² . . . . . . subtract 1, multiply by 4
±2√(x -1) = y -6 . . . . square root
y = 6 ± 2√(x -1) . . . . inverse relation
f⁻¹(x) = 6 ± 2√(x -1) . . . . in functional form
__
3) x = √(y +2) -4
x +4 = √(y +2) . . . . add 4
(x +4)² = y +2 . . . . square both sides
y = (x +4)² -2 . . . . . subtract 2
__
5) x = ∛(y +4) +4
x -4 = ∛(y +4) . . . . . subtract 4
(x -4)³ = y +4 . . . . . cube both sides
y = (x -4)³ -4 . . . . . . subtract 4
is continuous over its domain, all real
.
Meanwhile,
is defined for real
.
If
, then we have
as the domain of
.
We know that if
and
are continuous functions, then so is the composite function
.
Both
and
are continuous on their domains (excluding the endpoints in the case of
), which means
is continuous over
.
1. The mean of all the numbers is 41.
5. Median : 52
The requirement is that every element in the domain must be connected to one - and one only - element in the codomain.
A classic visualization consists of two sets, filled with dots. Each dot in the domain must be the start of an arrow, pointing to a dot in the codomain.
So, the two things can't can't happen is that you don't have any arrow starting from a point in the domain, i.e. the function is not defined for that element, or that multiple arrows start from the same points.
But as long as an arrow start from each element in the domain, you have a function. It may happen that two different arrow point to the same element in the codomain - that's ok, the relation is still a function, but it's not injective; or it can happen that some points in the codomain aren't pointed by any arrow - you still have a function, except it's not surjective.
Answer:
The volume of the sphere is 2048 in³.
Step-by-step explanation:
The volume of a sphere is given by:
Where:
r: is the radius = 8 in
Having the radius and by using 3 for π, the volume is:
Therefore, the volume of the sphere is 2048 in³.
I hope it helps you!