Answer:
791.68 cm/s
Step-by-step explanation:
The volume flow rate can be interpreted as the integral of fluid velocity over area
![\dot{V} = \int\limits^6_0 {v(r) 2\pi r} \, dr\\\dot{V} = 2\pi\int\limits^6_0 {(25-r^2)r} \, dr\\\dot{V} = 2\pi\int\limits^6_0 {25r-r^3} \, dr\\\\\dot{V} = 2\pi[12.5r^2 - r^4/4]_0^6\\\dot{V} = 2\pi(12.5*6^2 - 6^4/4 - 12.5*0 - 0)\\\dot{V} = 2\pi*126 = 791.68 cm/s](https://tex.z-dn.net/?f=%5Cdot%7BV%7D%20%3D%20%5Cint%5Climits%5E6_0%20%7Bv%28r%29%202%5Cpi%20r%7D%20%5C%2C%20dr%5C%5C%5Cdot%7BV%7D%20%3D%202%5Cpi%5Cint%5Climits%5E6_0%20%7B%2825-r%5E2%29r%7D%20%5C%2C%20dr%5C%5C%5Cdot%7BV%7D%20%3D%202%5Cpi%5Cint%5Climits%5E6_0%20%7B25r-r%5E3%7D%20%5C%2C%20dr%5C%5C%5C%5C%5Cdot%7BV%7D%20%3D%202%5Cpi%5B12.5r%5E2%20-%20r%5E4%2F4%5D_0%5E6%5C%5C%5Cdot%7BV%7D%20%3D%202%5Cpi%2812.5%2A6%5E2%20-%206%5E4%2F4%20-%2012.5%2A0%20-%200%29%5C%5C%5Cdot%7BV%7D%20%3D%202%5Cpi%2A126%20%3D%20791.68%20cm%2Fs)
Answer:
70%
Step-by-step explanation:
Percentage is out of 100
35/50 change denominator
multiply both numerator and denominator by 2
70/100= 70%
Answer:
(-162)/7 or -23 1/7 as mixed fraction
Step-by-step explanation:
Simplify the following:
(-36)/14 (-18) (-3)/6
Hint: | Express (-36)/14 (-18) (-3)/6 as a single fraction.
(-36)/14 (-18) (-3)/6 = (-36 (-18) (-3))/(14×6):
(-36 (-18) (-3))/(14×6)
Hint: | In (-36 (-18) (-3))/(14×6), divide -18 in the numerator by 6 in the denominator.
(-18)/6 = (6 (-3))/6 = -3:
(-36-3 (-3))/14
Hint: | In (-36 (-3) (-3))/14, the numbers -36 in the numerator and 14 in the denominator have gcd greater than one.
The gcd of -36 and 14 is 2, so (-36 (-3) (-3))/14 = ((2 (-18)) (-3) (-3))/(2×7) = 2/2×(-18 (-3) (-3))/7 = (-18 (-3) (-3))/7:
(-18 (-3) (-3))/7
Hint: | Multiply -18 and -3 together.
-18 (-3) = 54:
(54 (-3))/7
Hint: | Multiply 54 and -3 together.
54 (-3) = -162:
Answer: (-162)/7
Step-by-step explanation:
The answer is in the pic above
The a and b determine how big or small the shape of the conic section is.
<span>For the different conic sections given through the equations </span>
<span>Circle: x^2/a^2 + y^2/a^2=1 </span>
<span>Ellipse: x^2/b^2+y^2/a^2 = 1 </span>
<span>Hyperbola: x^2/a^2 - y^2/b^2 = 1 </span>
<span>When trying to isolate cos and sin from those equations to get cos^2t + sin^2 t = 1 you can determine the conic section when substituting cos t = x/a and sint = y/b into cos^2t+sin^2t square it and then refer to the conic section equations to determine the conic section. x defines the major axis and y is the minor axis. a and b provide the coordinate pairs</span>