Find the equation of a line, in slope intercept form of a line that passes through the point (-5,-1) and is parallel to the line
1 answer:
Answer:
y = 1/2x + 3/2
Step-by-step explanation:
Using the equation of the line
y - y_1 = m ( x - x_1)
First find the slope of the line
-2x + 4y = 8
It must be in this form
y = mx + C
4y = 8 + 2x
divide through by 4
4y/4 = 8 + 2x / 4
y = 8 + 2x/4
Let's separate
y = 8/4 + 2x/4
y = 2 + 1/2x
y = 1/2x + 2
Therefore, our slope or m is 1/2
Using the equation of the line
y - y_1 = m ( x - x_1)
With point (-5, -1)
x_1 = -5
y_1 = -1
y - (-1) = 1/2(x - (-5)
y + 1 = 1/2( x + 5)
Opening the brackets
y + 1 = x + 5 / 2
y = x + 5/2 - 1
Lcm is 2
y = x + 5 / 2 - 1/1
y = x + 5 -2/2
y = x +3/2
We can still separate it
y = x /2 + 3/2
y = 1/2x + 3/2
The equation of the line is
y = 1/2x + 3/2
The correct answer is A
You might be interested in
Answer:
40%
Step-by-step explanation:
You subtract 20 from 12 to get 8.
Divide 20 from 8 to get 0.40.
Answer:
I have my correct answers in the photo so just read from that :) <3
Answer:
If equal to 90 x is 4
Step-by-step explanation:
Answer:
Step-by-step explanation:
![18 {u}^{2} - 50y \\ \\ = 2[9 {u}^{2} - 25y] \\ \\ = 2[(3 {u})^{2} - (5 \sqrt{y} )^{2} ] \\ \\ = 2(3u + 5 \sqrt{y} )(3u - 5 \sqrt{y} )](https://tex.z-dn.net/?f=18%20%7Bu%7D%5E%7B2%7D%20%20-%2050y%20%5C%5C%20%20%5C%5C%20%20%3D%202%5B9%20%7Bu%7D%5E%7B2%7D%20%20-%2025y%5D%20%20%5C%5C%20%20%5C%5C%20%20%3D%202%5B%283%20%7Bu%7D%29%5E%7B2%7D%20%20-%20%285%20%5Csqrt%7By%7D%20%29%5E%7B2%7D%20%5D%20%20%20%5C%5C%20%20%5C%5C%20%20%3D%202%283u%20%20%2B%205%20%5Csqrt%7By%7D%20%29%283u%20-%205%20%5Csqrt%7By%7D%20%29)
4.89 is you're answer. your welcom