1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
5

How many ways can 8 people stand in a line if Alice and Bob refuse to stand next to each other?

Mathematics
1 answer:
MatroZZZ [7]3 years ago
4 0
<h3>Answer: 30,240 different ways</h3>

====================================================

Explanation:

We have 8 people to start with. If we remove Alice and Bob, and replace them with Charlie (who will be a stand in for both people), then we have 8-2+1 = 7 people in this line. There are 7! = 7*6*5*4*3*2*1 = 5040 different permutations or line orderings for these seven people.

For any given permutation, replace Charlie with Alice and Bob. There are two ways to do this for any ordering. We could have Alice in front of Bob, or Bob in front of Alice. So there are 2 times as many permutations compared to 5040. In other words, there are 2*5040 = 10,080 different permutations where Alice and Bob are standing together.

This is out of 8! = 8*7*6*5*4*3*2*1 = 40,320 different permutations overall of arranging 8 people in a line.

This means there are 40,320 - 10,080 = 30,240 different ways to arrange 8 people such that Alice and Bob are not standing together.

In summary, the idea is to find out how many ways there are to have Alice and Bob together. Then we subtract that result from the total number of ways to arrange 8 people to get our final answer.

You might be interested in
Simplify.<br><br> 33+5⋅5<br><br><br><br><br> 52<br><br> 58<br><br> 70<br><br> 190
earnstyle [38]

Answer:

38.5 is your answer of this questions

7 0
3 years ago
Read 2 more answers
Simplify 9x(5x2)<br><br> A. 14x2<br> B. 14x3<br> C. 45x2<br> D. 45x3
allochka39001 [22]

Answer:

it should be C

Step-by-step explanation:

I could be wrong but I multiplied 9 times 5 then left with 2 but it should go by pemdas im not sure im in Algebra 1

7 0
3 years ago
Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e
enot [183]

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

8 0
4 years ago
Express 0.41 as a fraction in simplest form
Radda [10]
Write 0.41 as
0.41
1
Multiply both numerator and denominator by 10 for every number after the decimal point
0.41 × 100
1 × 100
=
41
100
Reducing the fraction gives
41
100
3 0
3 years ago
Read 2 more answers
State two postulates that are present in the diagram with examples.
weeeeeb [17]

Answer:

speed of light c is a constant, independent of the relative motion of the source.

laws of physics

Step-by-step explanation:

7 0
3 years ago
Other questions:
  • What is the length of side AB?
    12·2 answers
  • A person travels for 1 hour and then stops for 10 minutes. The person then travels for 2 hours, then stops for 10 minutes; trave
    9·1 answer
  • Given y=3x-7. When x = 0 what is the value of y
    11·1 answer
  • PLZ HELPPPPP
    6·1 answer
  • Solve x2 – 8x = 3 by completing the square. Which is the solution set of the equation? HURRY PLZZZZ
    9·2 answers
  • Bella spent 2.75 after paying a 10% tip what was the orginal price
    8·2 answers
  • Points S, O, M, and I are concyclic such that arc SO=arc IM. If the chord SM=IO are intersected at the points K. Prove that area
    10·1 answer
  • A spinner has 10 equal sections, numbered 1 to 10. If you spin the spinner 50 times, about how many times would you expect the s
    6·1 answer
  • un negocio de vinos tienen 3 barriles de vino que contiene 330 ; 630 y 360 litros respectivamente desea vender este vino en reci
    8·1 answer
  • Si comparamos la longitud de un centímetro con la longitud de un kilómetro, ¿Cuánto más representa la longitud de un kilómetro c
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!