1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastova [34]
3 years ago
5

Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e

igenvector decomposition, c) using undetermined coefficients.
Mathematics
1 answer:
enot [183]3 years ago
8 0

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

You might be interested in
PLEASE HELP ASAP
Irina18 [472]
30-2x>18: inequality

answer: 6 days
8 0
2 years ago
Can you help me with my Math, please?
creativ13 [48]
The first poster is not an accurate representation of the painting, but the second poster is an accurate representation because the ratio between the first and original lengths did not equal the ratio between the first and original widths but the second poster's ratios were equal.
6 0
3 years ago
Read 2 more answers
How do I solve this I don't understand any of this at all
Svetlanka [38]
I hope this helps you understand the question better!

7 0
3 years ago
A hemisphere (a half sphere) has a diameter of 10 centimeters. Find the
sashaice [31]

Answer:

v= 261.79 = 261.8

I believe this is right

3 0
3 years ago
What is the median of the data below?
ExtremeBDS [4]
I think it is 35. i hope i have helped you
5 0
3 years ago
Read 2 more answers
Other questions:
  • If 0.000023 is expressed in the form 2.3*10n what is the value of n
    9·1 answer
  • I dont know the answer or how to get it for #3.
    15·1 answer
  • If x+y=z and z=x+4,then x+y=x+4
    5·1 answer
  • Which exponential function is represented by the values in the table?
    13·2 answers
  • omar is saving to buy a game hes saved 30 dollars which is six-fifths of total game cost. how much does it cost?
    13·1 answer
  • Find the values of x and y.
    12·2 answers
  • What property is 87 times 3 equals 3 times 87?
    11·2 answers
  • HELP PLEASE THIS IS DUE MONDAY! :(( GIVING 25 POINTS !!!
    10·2 answers
  • Which equation represents the line through (0,0) and (3,4)? a. y=3/4x b.y=4/3x c.y=4x d.y=3x
    14·1 answer
  • In a random sample survey of 80 students at Torreys middle school, 24 students said that math was their favorite subject. There
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!