1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastova [34]
3 years ago
5

Exercise 3.9.101: Find a particular solution to x 0 = 5x + 4y+ t, y 0 = x + 8y−t, a) using integrating factor method, b) using e

igenvector decomposition, c) using undetermined coefficients.
Mathematics
1 answer:
enot [183]3 years ago
8 0

In matrix form, the ODE is given by

\underbrace{\begin{bmatrix}x'\\y'\end{bmatrix}}_{\vec x'}=\underbrace{\begin{bmatrix}5&4\\1&8\end{bmatrix}}_A\underbrace{\begin{bmatrix}x\\y\end{bmatrix}}_{\vec x}+t\underbrace{\begin{bmatrix}1\\-1\end{bmatrix}}_{\vec f}

a. Move A\vec x to the left side and multiply both sides by the integrating factor, the matrix exponential of -A, e^{-At}:

e^{-At}\vec x'-Ae^{-At}\vec x=te^{-At}\vec f

Condense the left side as the derivative of a product:

\left(e^{-At}\vec x\right)=te^{-At}\vec f

Integrate both sides and multipy by e^{At} to solve for \vec x:

e^{-At}\vec x=\displaystyle\left(\int te^{-At}\,\mathrm dt\right)\vec f\implies\vec x=\displaystyle e^{At}\left(\int te^{-At}\,\mathrm dt\right)\vec f

Finding e^{\pm At} requires that we diagonalize A.

A has eigenvalues 4 and 9, with corresponding eigenvectors \begin{bmatrix}-4&1\end{bmatrix}^\top and \begin{bmatrix}1&1\end{bmatrix}^\top (explanation for this in part (b)), so we have

A=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4&0\\0&9\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\begin{bmatrix}-4&1\\1&1\end{bmatrix}\begin{bmatrix}4^n&0\\0&9^n\end{bmatrix}\begin{bmatrix}-4&1\\1&1\end{bmatrix}^{-1}

\implies A^n=\dfrac15\begin{bmatrix}4^{n+1}+9^n&4\cdot9^n-4^{n+1}\\9^n-4^n&4^n+4\cdot9^n\end{bmatrix}

\implies e^{\pm At}=\dfrac15\begin{bmatrix}4e^{\pm4t}+e^{\pm9t}&4e^{\pm9t}-4e^{\pm4t}\\e^{\pm9t}-e^{\pm4t}&e^{\pm4t}+4e^{\pm9t}\end{bmatrix}

\implies\vec x=\dfrac15e^{At}\begin{bmatrix}C_1\\C_2\end{bmatrix}-\dfrac1{216}\begin{bmatrix}72t+20\\-36t-7\end{bmatrix}

b. Find the eigenvalues of A:

\det(A-\lambda I_2)=\begin{vmatrix}5-\lambda&4\\1&8-\lambda\end{vmatrix}=\lambda^2-13\lambda+36=0

\implies(\lambda-4)(\lambda-9)=0\implies\lambda_1=4,\lambda_2=9

Let \vec\eta=\begin{bmatrix}\eta_1&\eta_2\end{bmatrix}^\top and \vec\theta=\begin{bmatrix}\theta_1&\theta_2\end{bmatrix}^\top be the corresponding eigenvectors.

For \lambda_1=4, we have

\begin{bmatrix}1&4\\1&4\end{bmatrix}\begin{bmatrix}\eta_1\\\eta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

which means we can pick \eta_1=-4 and \eta_2=1.

For \lambda_2=9, we have

\begin{bmatrix}-4&4\\1&-1\end{bmatrix}\begin{bmatrix}\theta_1\\\theta_2\end{bmatrix}=\begin{bmatrix}0\\0\end{bmatrix}

so we pick \theta_1=\theta_2=1.

Then the characteristic solution to the system is

\vec x_c=C_1e^{\lambda_1t}\vec\eta+C_2e^{\lambda_2t}\vec\theta

\vec x_c=C_1e^{4t}\begin{bmatrix}-4\\1\end{bmatrix}+C_2e^{9t}\begin{bmatrix}1\\1\end{bmatrix}

c. Now we find the particular solution with undetermined coefficients.

The nonhomogeneous part of the ODE is a linear function, so we can start with assuming a particular solution of the form

\vec x_p=\vec at+\vec b\implies\vec x_p'=\vec a

Substituting these into the system gives

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\left(\begin{bmatrix}a_1\\a_2\end{bmatrix}t+\begin{bmatrix}b_1\\b_2\end{bmatrix}\right)+\begin{bmatrix}1\\-1\end{bmatrix}t

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}5&4\\1&8\end{bmatrix}\begin{bmatrix}a_1t+b_1\\a_2t+b_2\end{bmatrix}+\begin{bmatrix}t\\-t\end{bmatrix}

\begin{bmatrix}a_1\\a_2\end{bmatrix}=\begin{bmatrix}(5a_1+4a_2+1)t+(5b_1+4b_2)\\(a_1+8a_2-1)t+(b_1+8b_2)\end{bmatrix}

\implies\begin{cases}5a_1+4a_2=-1\\5b_1+4b_2=a_1\\a_1+8a_2=1\\b_1+8b_2=a_2\end{cases}\implies a_1=-\dfrac13,a_2=\dfrac16,b_1=-\dfrac5{54},b_2=\dfrac7{216}

Put everything together to get a solution

\vec x=\vec x_c+\vec x_p

that should match the solution in part (a).

You might be interested in
Find the surface area of the prism.
ratelena [41]
The surface area would be 3 times 4 which is 12cm3
5 0
2 years ago
Factorise x^2/4-y^2/4​
Nuetrik [128]

Answer:

\large\boxed{\left(\dfrac{x}{2}-\dfrac{y}{2}\right)\left(\dfrac{x}{2}+\dfrac{y}{2}\right)=\dfrac{x-y}{2}\cdot\dfrac{x+y}{2}}

Step-by-step explanation:

\dfrac{x^2}{4}-\dfrac{y^2}{4}=\dfrac{x^2}{2^2}-\dfrac{y^2}{2^2}\qquad\text{use}\ \left(\dfrac{a}{b}\right)^n=\dfrac{a^n}{b^n}\\\\=\left(\dfrac{x}{2}\right)^2-\left(\dfrac{y}{2}\right)^2\qquad\text{use}\ (a-b)(a+b)=a^2-b^2\\\\=\left(\dfrac{x}{2}-\dfrac{y}{2}\right)\left(\dfrac{x}{2}+\dfrac{y}{2}\right)=\dfrac{x-y}{2}\cdot\dfrac{x+y}{2}

3 0
3 years ago
The product of 8/15, 6/5,1/3 is
Debora [2.8K]
Product is the result of multiplying the numbers, so the <span>product of 8/15, 6/5,1/3 means that we have to multiply the three numbers, like this:

\frac{8}{15} * \frac{6}{5} * \frac{1}{3}
let's make them into one fraction:
</span><span>
\frac{8*6*1}{15*5*3}


We can simplyfy:
</span>
<span>\frac{8*6}{15*5*3}

</span>
<span>\frac{8*2}{15*5}

and multiply:
</span>
<span>\frac{16}{75}

and this is the correct answer!</span>




3 0
3 years ago
Which expression below has the same value as 9 to the power of 6
dimulka [17.4K]
The answer is c. 9x9x9x9x9x9
5 0
3 years ago
Read 2 more answers
Kayla bought 5.5 pounds of apples. She paid a total of $7.15. What was the unit rate of the apples per pound? Answer and explica
Bess [88]

Answer:

$1.30/pound

Step-by-step explanation:

7.15/5.5=1.3, and 1.3 x 5.5= 7.15

6 0
3 years ago
Other questions:
  • Plz help out ASAP!:) TYSM
    14·1 answer
  • Willa downloads 5 songs. Three of the song files are each 2.75MB. Two song files are each 3.8 MB. How much space does Willa need
    7·2 answers
  • The area of the rug is 4 15/36<br> The rug is 2 3/4 meters in height <br> How wide is the rug
    5·1 answer
  • Explain why the negation of “Some students in my class use e-mail” is not “Some students in my class do not use e-mail”.
    11·1 answer
  • What is the binomial
    14·2 answers
  • The distance d a train travels varies directly with the amount of time t that has elapsed since departure. If the train travels
    6·2 answers
  • What is the equation of the line that passes through the point (-1,4) and has a<br> slope of -5
    9·1 answer
  • Ms. Armstrong is a carpenter. She keeps her tools in a cube-shaped box in her truck. Ms. Armstrong's toolbox is 15 inches long o
    14·2 answers
  • 2000 soldiers stand in a row. Beginning from the left, each soldier calls out a number, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, and
    12·1 answer
  • Write in simplest form 1/3 times 1 1/3
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!