Answer:
The fourth pair of statement is true.
9∈A, and 9∈B.
Step-by-step explanation:
Given that,
U={x| x is real number}
A={x| x∈ U and x+2>10}
B={x| x∈ U and 2x>10}
If 5∈ A, Then it will be satisfies x+2>10 , but 5+2<10.
Similarly, If 5∈ B, Then it will be satisfies 2x>10 , but 2.5=10.
So, 5∉A, and 5∉B.
If 6∈ A, Then it will be satisfies x+2>10 , but 6+2<10.
Similarly, If 6∈ B, Then it will be satisfies 2x>10 , and 2.6=12>10.
So, 6∉A, and 6∈B.
If 8∈ A, Then it will be satisfies x+2>10 , but 8+2=10.
Similarly, If 8∈ B, Then it will be satisfies 2x>10. 2.8=16>10.
So, 8∉A, and 8∈B.
If 9∈ A, Then it will be satisfies x+2>10 , but 9+2=11>10.
Similarly, If 9∈ B, Then it will be satisfies 2x>10. 2.9=18>10.
So, 9∈A, and 9∈B.
Answer:
1. He added 5 instead of subtracted 5.
2. He should have subtracted 5.
3. 2 2/3
Step-by-step explanation:
3x+5=13
subtract 5 to both sides 3x=8
divide both sides by 3 x=8/3 or 2 2/3
Answer:
a=-1
Step-by-step explanation:
a(n) = -6+3(n-1)
a(n) = -6+3n-3
a(n) -n=-6+3n-n-3
a=-6+3-3
+3 +3
a3=-3
---- ----
3 3
a=-1
Y2-y1 over x2-x1 or you can go onto the calculator and push list and put in the points and it will give you the answer of 68
Answer:
5b+40
Step-by-step explanation:
distributive property