Step-by-step explanation:
F(x) = ∫ₐˣ t⁷ dt
F(x) is the area under f(t) between t=a and t=x. When x=a, the width of the interval is 0, so the area is zero.
F(6) = 0, so a = 6.
F(x) = ∫₆ˣ t⁷ dt
F(6) = ∫₆⁶ t⁷ dt
F(6) = 0
In the hundreds place so its 300
<h3>Yes the triangles are congruent by ASA axiom or congruency .</h3>
Because one side of triangle is equal and two angles are equal . So option 1 is your answer .
Answer:
m<FLS=108 degrees
m<SLT=72 degrees
m<ALG=18 degrees
Step-by-step explanation:
(3x) + (4x +12) = 180
x = 24
4x + 12 = 108 = m<FLS
180 - 108 = 72 = m<SLT
SLG = 72 + 90 + x
x = 18 = m<ALG
Answer: "No, the triangles are not necessarily congruent." is the correct statement .
Step-by-step explanation:
In ΔCDE, m∠C = 30° and m∠E = 50°
Therefore by angle sum property of triangles
m∠C+m∠D+m∠E=180°
⇒m∠D=180°-m∠E-m∠C=180°-30°-50°=100°
⇒m∠D=100°
In ΔFGH, m∠G = 100° and m∠H = 50°
Similarly m∠F +∠G+m∠H=180°
⇒m∠F=180°-∠G-m∠H=180°-100°-50=30°
⇒m∠F=30°
Now ΔCDE and ΔFGH
m∠C=m∠F=30°,m∠D=m∠G=100°,m∠E=m∠H=50°
by AAA similarity criteria ΔCDE ≈ ΔFGH but can't say congruent.
Congruent triangles are the pair of triangles in which corresponding sides and angles are equal . A congruent triangle is a similar triangle but a similar triangle may not be a congruent triangle.