Step-by-step explanation:
The first column of matrix P must correspond to the first row of matrix I.
So if the first column in P is number of cherry pies, the first row in I must be the cost of cherry pie ingredients.
Fortunately, the table is already set up in the correct order. So all you have to do is write it as a matrix.
![P = \left[\begin{array}{cccc}3&4&1&1\\6&6&4&6\\2&2&5&4\end{array}\right]](https://tex.z-dn.net/?f=P%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%264%261%261%5C%5C6%266%264%266%5C%5C2%262%265%264%5Cend%7Barray%7D%5Cright%5D)
![I = \left[\begin{array}{cccc}3\\5\\2\\6\end{array}\right]](https://tex.z-dn.net/?f=I%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%5C%5C5%5C%5C2%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
To multiply the matrices, start with the first row of matrix P.
3 4 1 1
Multiply each value by the corresponding row of matrix I.
3×3 = 9, 4×5 = 20, 1×2 = 2, 1×6 = 6
Add the results.
9 + 20 + 2 + 6 = 37
This is the value in the first row and first column of matrix PI. If matrix I had another column, we would add another column to PI and repeat this step for the new column. Since matrix I has only one column, we're finished with this row of PI.
Here's the result:
![PI = \left[\begin{array}{cccc}3\times3+4\times5+1\times2+1\times6\\6\times3+6\times5+4\times2+6\times6\\2\times3+2\times5+5\times2+4\times6\end{array}\right] \\PI = \left[\begin{array}{cccc}9+20+2+6\\18+30+8+36\\6+10+10+24\end{array}\right]\\PI = \left[\begin{array}{cccc}37\\92\\50\end{array}\right]](https://tex.z-dn.net/?f=PI%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%5Ctimes3%2B4%5Ctimes5%2B1%5Ctimes2%2B1%5Ctimes6%5C%5C6%5Ctimes3%2B6%5Ctimes5%2B4%5Ctimes2%2B6%5Ctimes6%5C%5C2%5Ctimes3%2B2%5Ctimes5%2B5%5Ctimes2%2B4%5Ctimes6%5Cend%7Barray%7D%5Cright%5D%20%5C%5CPI%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D9%2B20%2B2%2B6%5C%5C18%2B30%2B8%2B36%5C%5C6%2B10%2B10%2B24%5Cend%7Barray%7D%5Cright%5D%5C%5CPI%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D37%5C%5C92%5C%5C50%5Cend%7Barray%7D%5Cright%5D)