Answer:
Tt - 2/4 = 1/2 or 50% Heterozygous TALL
tt - 2/4 = 1/2 or 50% Homozygous Dwarf
Explanation:
So let's make a Punnett for this so you can see what the outcome is yourself:
Tall is <u>dominant</u> - T
Dwarf is <u>recessive</u> - t
Heterozygous means that they have one of each allele. The genotype of one parent would be then Tt.
***It is heterozygous tall because Tall is a dominant trait so if it is accompanied by the recessive trait dwarf, then the Tall allele would mask it.
The other parent is a dwarf plant. The genotype would then be tt.
*** Now for a recessive trait to appear, it should not have a dominant trait mixed with it, which could mask it. The result then is homozygous recessive or homozygous Dwarf.
So now that we know the genotypes of the parent plants, we can put it into a Punnet:
t t
T Tt Tt
t tt tt
As you can see, out of the 4 outcomes we have:
Tt - 2/4 = 1/2 or 50% Heterozygous TALL
tt - 2/4 = 1/2 or 50% Homozygous Dwarf
Answer:
Formas: todas las bacterias se pueden clasificar en una de las tres formas básicas: esferas (cocos), bastones (bacilos) y espirales o hélices (espiroquetas). Necesidad de oxígeno: las bacterias también se clasifican en dos grupos, según si necesitan oxígeno para vivir y crecer o no les es necesario.
Answer: alleles
Explanation:
"An allele is a variant form of a gene. Genes come in different varieties, called alleles. Somatic cells contain two alleles for every gene, with one allele provided by each parent of an organism."- Nature .com
Answer:
B) FADH2 -- FMN of Complex I -- Fe-S of Complex II -- Q -- Fe-S of Complex III -- Cyt c -- Cyt a of Complex IV -- O2
Explanation:
FADH2 and NADH give their high energy electrons to the terminal electron acceptor molecular oxygen via an electron transport chain. As the electrons move through electron carriers of the electron transport chain, they lose their free energy. Part of the free energy of the electrons is used to pump the protons from the matrix into the intermembrane space. Therefore, part of the energy of electrons is temporarily stored in the form of a proton concentration gradient.
NADH gives its electrons to FMN of complex I while FADH2 gives its electrons to the Fe-S center of complex II. Both the complexes are oxidized by coenzyme (Q) which in turn reduces Fe-S centers of complex III. Cyt c of complex IV obtains electrons from complex III and passes them to CuA center, to heme "a" to heme "a3-CuB center" and finally to the molecular oxygen.
So, the compounds arranged with respect to the energy content of electrons in descending order are as follows: FADH2 -- FMN of Complex I -- Fe-S of Complex II -- Q -- Fe-S of Complex III -- Cyt c -- Cyt a of Complex IV -- O2.
The second phage of cellular respiration is transition stage.
Process take place in transition stage:
The transition stage take place in mitochondria. The pyruvate is combined with NAD+ to form NADH and acetyl co-enzyme molecules.
After transition stage, Krebs cycle starts.