A point on the edge of the roller travels the circumference of the roller in 1 revolution, so that its linear velocity is
(10 rev/s) * (2*(14.25 cm)*pi cm/rev) = 285 pi cm/s
or about 895.4 cm/s.
2x+4y=0
substitute y with 0
2x+4(0)=0
solve the equation
2x+0=0
2x=0
divide by 2 on both sides
x=0
4x+8y=7
substitute y with 0
4x+8(0)=7
solve the equation
4x+0=7
4x=7
divide by 4 on both sides
x=7/4 or x=1 3/4 or x=1.75
3x-7y=-29
2x+2y=6
solve the bottom equation
3x-7y=-29
x=3-y
substitute for x
3(3-y)-7y=-29
solve the equation
y=19/5
now substitute for y
x=3-
solve for x
x=-4/5
the possible solution of the system is the ordered pair
(x,y)=(
)
Answer:
I think it is 12 4/5
Step-by-step explanation:
hope this helps if not let me now
<span><span>f<span>(x)</span>=8x−6</span><span>f<span>(x)</span>=8x-6</span></span> , <span><span>[0,3]</span><span>[0,3]
</span></span>The domain of the expression is all real numbers except where the expression is undefined. In this case, there is no real number that makes the expression undefined.<span><span>(−∞,∞)</span><span>(-∞,∞)</span></span><span><span>{x|x∈R}</span><span>{x|x∈ℝ}</span></span><span><span>f<span>(x)</span></span><span>f<span>(x)</span></span></span> is continuous on <span><span>[0,3]</span><span>[0,3]</span></span>.<span><span>f<span>(x)</span></span><span>f<span>(x)</span></span></span> is continuousThe average value of function <span>ff</span> over the interval <span><span>[a,b]</span><span>[a,b]</span></span> is defined as <span><span>A<span>(x)</span>=<span>1<span>b−a</span></span><span>∫<span>ba</span></span>f<span>(x)</span>dx</span><span>A<span>(x)</span>=<span>1<span>b-a</span></span><span>∫ab</span>f<span>(x)</span>dx</span></span>.<span><span>A<span>(x)</span>=<span>1<span>b−a</span></span><span>∫<span>ba</span></span>f<span>(x)</span>dx</span><span>A<span>(x)</span>=<span>1<span>b-a</span></span><span>∫ab</span>f<span>(x)</span>dx</span></span>Substitute the actual values into the formula for the average value of a function.<span><span>A<span>(x)</span>=<span>1<span>3−0</span></span><span>(<span>∫<span>30</span></span>8x−6dx)</span></span><span>A<span>(x)</span>=<span>1<span>3-0</span></span><span>(<span>∫03</span>8x-6dx)</span></span></span>Since integration is linear, the integral of <span><span>8x−6</span><span>8x-6</span></span> with respect to <span>xx</span> is <span><span><span>∫<span>30</span></span>8xdx+<span>∫<span>30</span></span>−6dx</span><span><span>∫03</span>8xdx+<span>∫03</span>-6dx</span></span>.<span><span>A<span>(x)</span>=<span>1<span>3−0</span></span><span>(<span>∫<span>30</span></span>8xdx+<span>∫<span>30</span></span>−6dx)</span></span><span>A<span>(x)</span>=<span>1<span>3-0</span></span><span>(<span>∫03</span>8xdx+<span>∫03</span>-6dx)</span></span></span>Since <span>88</span> is constant with respect to <span>xx</span>, the integral of <span><span>8x</span><span>8x</span></span> with respect to <span>xx</span> is <span><span>8<span>∫<span>30</span></span>xdx</span><span>8<span>∫03</span>xdx</span></span>.<span><span>A<span>(x)</span>=<span>1<span>3−0</span></span><span>(8<span>∫<span>30</span></span>xdx+<span>∫<span>30</span></span>−6dx)</span></span><span>A<span>(x)</span>=<span>1<span>3-0</span></span><span>(8<span>∫03</span>xdx+<span>∫03</span>-6dx)</span></span></span>By the Power Rule, the integral of <span>xx</span> with respect to <span>xx</span> is <span><span><span>12</span><span>x2</span></span><span><span>12</span><span>x2</span></span></span>.<span>A<span>(x)</span>=<span>1<span>3−0</span></span><span>(8<span>(<span><span>12</span><span>x2</span><span>]<span>30</span></span></span>)</span>+<span>∫<span>30</span></span>−6dx<span>)</span></span></span>