Answer:
x2 = y2/m - y1/m + x1
Step-by-step explanation:
Expand
y2 - y1 = mx2 - mx1
Rearrange
y2 - y1 + mx1 = mx2
Divide both sides by m to make x2 on its own
y2/m - y1/m + x1 (m's cancel out) = x2
Hence:
x2 = y2/m - y1/m + x1
Answer:
if -11i^3 =-11^3 and -11i^3=11i then -11^3=11i
if I'm wrong pls correct me but I'm pretty sure this is
Answer:
<em>Choice: B.</em>
Step-by-step explanation:
<u>Operations With Functions</u>
Given the functions:
![f(x)=\sqrt[3]{12x+1}+4](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7B12x%2B1%7D%2B4)

The function (g-f)(x) can be obtained by replacing both functions and subtracting them as follows:

![(g-f)(x)= \log(x-3)+6 - (\sqrt[3]{12x+1}+4)](https://tex.z-dn.net/?f=%28g-f%29%28x%29%3D%20%5Clog%28x-3%29%2B6%20-%20%28%5Csqrt%5B3%5D%7B12x%2B1%7D%2B4%29)
Operating:
![(g-f)(x)= \log(x-3)+6 - \sqrt[3]{12x+1}-4](https://tex.z-dn.net/?f=%28g-f%29%28x%29%3D%20%5Clog%28x-3%29%2B6%20-%20%5Csqrt%5B3%5D%7B12x%2B1%7D-4)
Joining like terms:
![\boxed{(g-f)(x)= \log(x-3) - \sqrt[3]{12x+1}+2}](https://tex.z-dn.net/?f=%5Cboxed%7B%28g-f%29%28x%29%3D%20%5Clog%28x-3%29%20-%20%5Csqrt%5B3%5D%7B12x%2B1%7D%2B2%7D)
Choice: B.
Answer:
Step-by-step explanation:
4q2 + 2q + 3
(2q - 2) l _ 8q3 - 4q2 - q + 6
8q3 - 8q2
_ 4q2 - q
4q2 - 4q
_ 3q + 6
6q + 6
-3q (remainder)
4q2 + 2q + 3 -3q / (2q - 2)
hope this helps