Answer:
<em>As </em><em>we </em><em>know </em><em>that </em><em>there </em><em>is </em><em>a </em><em>radius </em><em>which </em><em>is </em><em>2 </em><em>cm</em>
<em>so </em>
<em>circumference </em><em>=</em><em> </em><em>2</em><em> </em><em>π</em><em> </em><em>r</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>2</em><em> </em><em>*</em><em> </em><em>2</em><em>2</em><em>/</em><em>7</em><em> </em><em>*</em><em> </em><em>2</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>1</em><em>2</em><em>.</em><em>5</em><em>7</em><em>c</em><em>m</em>
<em>it's </em><em>circumference </em><em>is </em><em>1</em><em>2</em><em>.</em><em>5</em><em>7</em><em> </em><em>cm</em>
Answer:
they both has 7 slides and the presentation had a duration of 28 seconds
Step-by-step explanation:
we have to setup equation that makes them equal to each other if you know what i mean. 2x+16=3x+10
then we just solve for x
2x+16=3x+10
subtract 10 from each side
2x+6=3x
step 2 subtract 2x from each side
x=6
so both of their presentations are 7 slides long
then to find the length of their presentations we just plug in 6 to one of the equations
2(6)+16
2x6=12 12+16=28 so both of their presentations were 28 seconds
I believe the answer your looking for is B.. good luck my friend!
Our inequality looks like this:
2(x+6)≤52
Using the Distributive Property, we have
2*x + 2*6 ≤52
2x+12≤52
Cancel the 12 by subtracting from both sides:
2x+12-12≤52-12
2x≤40
Divide both sides by 2:
2x/2 ≤ 40/2
x≤20
x cannot be any more than 20 to satisfy this inequality.
We are asked in the problem to evaluate the integral of <span>(cosec^2 x-2005)÷cos^2005 x dx. The function is an example of a complex function with a degree that is greater than one and that uses special rules to integrate the function via the trigonometric functions. For example, we integrate
2005/cos^2005x dx which is equal to 2005 sec^2005 x since sec is the inverse of cos. The integral of this function when n >3 is equal to I=</span><span>∫<span>sec(n−2)</span>xdx+∫tanx<span>sec(n−3)</span>x(secxtanx)dx
Then,
</span><span>∫tanx<span>sec(<span>n−3)</span></span>x(secxtanx)dx=<span><span>tanx<span>sec(<span>n−2)</span></span>x/(</span><span>n−2)</span></span>−<span>1/(<span>n−2)I
we can then integrate the function by substituting n by 3.
On the first term csc^2 2005x / cos^2005 x we can use the trigonometric identity csc^2 x = 1 + cot^2 x to simplify the terms</span></span></span>