Answer:
Answers are in bold type
Step-by-step explanation:
f(x) = 
The parabola opens up, so has a minimum at the vertex.
Let (h, k) be the vertex
h = -b/2a = - (-144)/2(1) = 57
k = 57^2 - 144(57) = 3249 - 6498 = -3249
Therefore, the vertex is (57, -3249)
The minimum value is -3249
The domain is the set of real numbers.
The range = {y | y ≥ -3249}
The function decreases when -∞ < x < 57 and increases when 57 > x > ∞
The x - intercepts:
= 0
x(x - 114x) = 0
x = 0 or x = 114
x-intercepts are (0, 0) and (0, 114)
When x = 0, then we get the y-intercept. So, 0^2 - 114(0) = 0
y-intercept is (0, 0)
Answer:
x=5
Step-by-step explanation:
From this information we know that,

Hope it helps :)
The pool can hold 65.84 ft³ of water
<u>Explanation:</u>
Given:
Shape of pool = octagonal
Base area of the pool = 22 ft²
Depth of the pool = 3 feet
Volume, V = ?
We know:
Area of octagon = 2 ( 1 + √2) a²
22 ft² = 2 ( 1 + √2 ) a²

a² = 
a² = 4.55
a = 2.132 ft
Side length of the octagon is 2.132 ft
We know:
Volume of octagon = 

Therefore, the pool can hold 65.84 ft³ of water
Answer:
Choice A)
.
Step-by-step explanation:
What are the changes that would bring
to
?
- Translate
to the left by
unit, and - Stretch
vertically (by a factor greater than
.)
. The choices of
listed here are related to
:
- Choice A)
; - Choice B)
; - Choice C)
; - Choice D)
.
The expression in the braces (for example
as in
) is the independent variable.
To shift a function on a cartesian plane to the left by
units, add
to its independent variable. Think about how
, which is to the left of
, will yield the same function value.
Conversely, to shift a function on a cartesian plane to the right by
units, subtract
from its independent variable.
For example,
is
unit to the left of
. Conversely,
is
unit to the right of
. The new function is to the left of
. Meaning that
should should add
to (rather than subtract
from) the independent variable of
. That rules out choice B) and D).
- Multiplying a function by a number that is greater than one will stretch its graph vertically.
- Multiplying a function by a number that is between zero and one will compress its graph vertically.
- Multiplying a function by a number that is between
and zero will flip its graph about the
-axis. Doing so will also compress the graph vertically. - Multiplying a function by a number that is less than
will flip its graph about the
-axis. Doing so will also stretch the graph vertically.
The graph of
is stretched vertically. However, similarly to the graph of this graph
, the graph of
increases as
increases. In other words, the graph of
isn't flipped about the
-axis.
should have been multiplied by a number that is greater than one. That rules out choice C) and D).
Overall, only choice A) meets the requirements.
Since the plot in the question also came with a couple of gridlines, see if the points
's that are on the graph of
fit into the expression
.