Answer:








Step-by-step explanation:
Given

Convert the probability to decimal

Solving (a): P(ABC)
This is calculated as:

This gives:


Solving (b): 
This is calculated as:

In probability:

So, we have:




Solving (c): 
This is calculated as:

![P(AB^cC) = P(A) * [1 - P(B)] * P(C)](https://tex.z-dn.net/?f=P%28AB%5EcC%29%20%3D%20P%28A%29%20%2A%20%5B1%20-%20P%28B%29%5D%20%2A%20P%28C%29)



Solving (d): 
This is calculated as:

![P(A^cBC) = [1-P(A)] *P(B) * P(C)](https://tex.z-dn.net/?f=P%28A%5EcBC%29%20%3D%20%5B1-P%28A%29%5D%20%2AP%28B%29%20%2A%20P%28C%29)



Solving (e): 
This is calculated as:

![P(AB^cC^c) = P(A) * [1-P(B)] * [1-P(C)]](https://tex.z-dn.net/?f=P%28AB%5EcC%5Ec%29%20%20%3D%20P%28A%29%20%2A%20%5B1-P%28B%29%5D%20%2A%20%5B1-P%28C%29%5D)
![P(AB^cC^c) = 0.48 * [1-0.48] * [1-0.48]](https://tex.z-dn.net/?f=P%28AB%5EcC%5Ec%29%20%20%3D%200.48%20%2A%20%5B1-0.48%5D%20%2A%20%5B1-0.48%5D)


Solving (f): 
This is calculated as:

![P(A^cBC^c) = [1-P(A)] * P(B) * [1-P(C)]](https://tex.z-dn.net/?f=P%28A%5EcBC%5Ec%29%20%20%20%3D%20%5B1-P%28A%29%5D%20%2A%20P%28B%29%20%2A%20%5B1-P%28C%29%5D)
![P(A^cBC^c) = [1-0.48] * 0.48 * [1-0.48]](https://tex.z-dn.net/?f=P%28A%5EcBC%5Ec%29%20%20%20%3D%20%5B1-0.48%5D%20%2A%200.48%20%2A%20%5B1-0.48%5D)


Solving (g): 
This is calculated as:

![P(A^cB^cC) = [1-P(A)] * [1-P(B)] * P(C)](https://tex.z-dn.net/?f=P%28A%5EcB%5EcC%29%20%20%3D%20%5B1-P%28A%29%5D%20%2A%20%5B1-P%28B%29%5D%20%2A%20P%28C%29)
![P(A^cB^cC) = [1-0.48] * [1-0.48] * 0.48](https://tex.z-dn.net/?f=P%28A%5EcB%5EcC%29%20%20%3D%20%5B1-0.48%5D%20%2A%20%5B1-0.48%5D%20%2A%200.48)


Solving (h): 
This is calculated as:

![P(A^cB^cC^c) = [1-P(A)] * [1-P(B)] * [1-P(C)]](https://tex.z-dn.net/?f=P%28A%5EcB%5EcC%5Ec%29%20%20%3D%20%5B1-P%28A%29%5D%20%2A%20%5B1-P%28B%29%5D%20%2A%20%5B1-P%28C%29%5D)
![P(A^cB^cC^c) = [1-0.48] * [1-0.48] * [1-0.48]](https://tex.z-dn.net/?f=P%28A%5EcB%5EcC%5Ec%29%20%20%3D%20%5B1-0.48%5D%20%2A%20%5B1-0.48%5D%20%2A%20%5B1-0.48%5D)


Answer:
a) $1056.33 b) 23 years
Step-by-step explanation:
a) 10000(1+1.85/100)^3=10565.33 (2d.p.)
b) let x be the no. of years
15000 = 10000(1+1.85/100)^x
1.5 = 1.0185^x
ln both sides
ln 1.5 = x ln 1.0185
x = ln 1.5/ln 1.0185
=22.11
=23 years (rounded up)
The correct option is: a female who weighs 1500 g
<em><u>Explanation</u></em>
<u>Formula for finding the z-score</u> is: 
Newborn males have weights with a mean
of 3272.8 g and a standard deviation
of 660.2 g.
So, the z-score for the newborn male who weighs 1500 g will be.......

According to the normal distribution table, 
Now, newborn females have weights with a mean
of 3037.1 g and a standard deviation
of 706.3 g.
So, the z-score for the newborn female who weighs 1500 g will be.......

According to the normal distribution table, 
As we can see that the <u>probability that a newborn female has weight of 1500 g is greater than newborn male</u>, so a newborn female has the weight of 1500 g that is more extreme relative to the group from which he came.