I don't think changing seasons can REMOVE CO2 from the air, but I do think instead it could add it to the air. It's a long process that involves several ecosystems and stuff. But, as the climate is getting warmer, ice caps are melting and within these ice caps... there are trapped bubbles of CO2 that are released ( I am not sure if this adds a lot of CO2 to the atmosphere, but I am sure that it does contribute to CO2 concentration).
In relation to your last statement... plant growth would actually reduce CO2 in the air because of the process of photosynthesis. Plants take in CO2 and give out O2 for us to breathe. In turn we conduct cellular respiration in which we take in the O2 and give out the CO2. So, plants are actually one good solution for decreasing CO2 levels.
Answer:
This question is incomplete, the options are:
A. Two copies of the allele that determines phenotype whenever the allele is present
B. Two copies of the allele whose effect is hidden unless the other allele is absent
C. One copy of the allele that determines phenotype when present and one copy of the other allele
D. One copy of each of two alleles that both contribute equally to determining phenotype
The answer is B.
Explanation:
According to Gregor Mendel, a Gene comes in two alternative forms called ALLELES. One allele called the DOMINANT ALLELE is capable of masking the phenotypic expression of the other called the RECESSIVE ALLELE. The dominant allele will always express itself whenever it is present. However, a recessive trait will only be expressed when two alleles for recessiveness occur in the gene.
An individual whose genotype is for the recessive allele will have two copies of the allele whose effect is hidden unless the other allele is absent. This means that in that particular gene, the two present alleles will be recessive alleles.
Cretaceous jurassic triasic
C. The organism would slow down its breathing, so that the heart could recover.