The bisector of angle APQ passes through O and this is illustrated below.
<h3>How to illustrate the information?</h3>
From the information given, the center is O. and the circle passes through O and cuts at K.
In this case, it should be noted that the circles are equal according to the SAS test.
Here, AOB + APQ = 180° (Linear pair)
2AOB = 180
AOB = 90.
Therefore, the bisector of angle APQ passes through O.
Learn more about bisector on:
brainly.com/question/11006922
#SPJ1
26 x 72 = 1872
40 + 420 + 12 = 472
1872 - 472 = 1400 (the answer)
1) For each of these, keep in mind vertex form: f(x)=a(x-h)^2+k. With vertex form, a is the direction and width, h is the horizontal placement of the vertex, and k is the vertical placement. For the first one, notice that "a" is positive 1, so it faces up. This means that D, the one facing down, cannot be the answer. "h" is 1, so we will move the vertex to the right one unit (keep in mind (x-h), so if it were to be (h+3) you would move it to the left, not the right). "k" is -3, so we would move the vertex down 3 units. That said, the vertex should be at (1,-3) so the answer is C, or the one right below the first one.
2) The graph of f(x)=|2x| translated 5 units to the left means that h is equal to -5. When we plug -5 into vertex form, it should look like: g(x)=|2(x+5)|. The answer to this is A.
3) The equation for reflection on the x axis is f(x)=-a(x-h)+k. So, if the parent function f(x)=4|x| were to be reflected on the x axis, the function would look like this: g(x)=-4|x|. The answer to this should be B.
4) Since h=1 and k=0 in the function f(x)=-3|x-1|, the vertex will be (1,0).
5) This can also be written as g(x)=|x|-3. This means that k=-3, and will be a vertical translation of 3 units down.