Answer:
a?
Step-by-step explanation:
I'm pretty sure it is 5:55
Answer:
a. p = the population proportion of UF students who would support making the Tuesday before Thanksgiving break a holiday.
Step-by-step explanation:
For each student, there are only two possible outcomes. Either they are in favor of making the Tuesday before Thanksgiving a holiday, or they are against. This means that we can solve this problem using concepts of the binomial probability distribution.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

In which
is the number of different combinatios of x objects from a set of n elements, given by the following formula.

And p is the probability of X happening.
So, the binomial probability distribution has two parameters, n and p.
In this problem, we have that
and
. So the parameter is
a. p = the population proportion of UF students who would support making the Tuesday before Thanksgiving break a holiday.
Answer:
26x-67-x²
Step-by-step explanation:
We are given

Expanding (x-8)²=x²-16x+64
10x-3-(x²-16x+64)
10x-3-x²+16x-64
26x-67-x²