Ooh this will be good
So blood let’s say starts in the left atrium where it goes down through the mitral valve into the left ventricle. From the left ventricle of the blood is pushed through the aorta and from there through the various branches of the body eventually allowing oxygen rich blood to flow all across the body. Once this blood is picked up by veins as deoxygenated blood it goes back to the heart through the inferior and superior vena cava. From there the deoxygenated blood is sent into the right atrium, through the tricuspid vale into the right ventricle, through the pulmonic valve into the pulmonary artery and into the lungs for re-oxygenation. The re-oxygenated blood (oxygen rich blood) now goes through the pulmonary veins into the left atrium and the cycle beings again.
Remember this, Left side of heart is for oxygenated blood, Right side of heart is for deoxygenated blood.
Artery takes oxygen rich blood away from heart itself
Vein takes oxygen poor blood back into the heart
Exceptions, Pulmonary Artery takes oxygen poor blood away from heart and into lungs
Pulmonary vein takes oxygen rich blood into the left atrium to be pushed to the rest of e body.
B
Area B of the graph shows the activation energy required if an enzyme was not present
Explanation:
Reactions with high activation energy cannot occur spontaneously. Enzymes are responsible for lowering this activation energy and enabling reactions to occur at a faster pace than natural. An example is carbonic anhydrase enzyme that enables increased rates of carbon dioxide dissolving in and out of blood plasma.
Enzymes distort the bond of reactants such that they become unstable ( this raises the reactants Gibbs free energy). The bonds therefore break and rearrange to form the products of lower and stable energy states.
Learn More:
For more on activation energy check out;
brainly.com/question/10507976
brainly.com/question/5280701
#LearnWithBrainly
carbon cycle
Explanation:
It is because it moves carbon,a life sustaining element from the atmosphere and oceans into the organisms
The appropriate answer is e. gymnosperm. Gymnosperms have seeds that are not protected by an ovary or fruit. A popular example of a gymnosperm are conifers. Another characteristic of gymnosperms is that they do not have bright flowers. The Greek word for gymnosperm literally translates to naked fruit. The seeds of these plants are open to the air and as such they are directly pollinated by the wind.