1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara [203]
3 years ago
13

Prove that

Mathematics
1 answer:
Pani-rosa [81]3 years ago
7 0
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
You might be interested in
Hey there can you please help me posted picture of question
mash [69]
We can use quadratic formula to determine the roots of the given quadratic equation.

The quadratic formula is:

x= \frac{-b+- \sqrt{ b^{2} -4ac} }{2a}

b = coefficient of x term = 12
a = coefficient of squared term = 4
c = constant term = 9

Using the values, we get:

x= \frac{-12+- \sqrt{144-4(4)(9)} }{2(4)}  \\  \\ 
x= \frac{-12+-0}{8} \\  \\ 
x= \frac{-3}{2}

So, the correct answer to this question is option B
5 0
3 years ago
A sunglassez store bought $5000 worth of sunglasses. The store made $9000, making a profit $20 per pair of sunglasses. There wer
julia-pushkina [17]
200 because 5000/200 is 25 and add the profit to that to get 45. 9000/200 is 45. Sorry if that doesn't make sense :/
3 0
3 years ago
Solve for x<br> (1/x) -2/3 = (4x)
Vadim26 [7]

The value of x is x=\frac{-1+\sqrt{37}}{12} and x=\frac{-1-\sqrt{37}}{12}

Step-by-step explanation:

The equation is \frac{1}{x}-\frac{2}{3}=4 x

Subtracting by 4x on both sides,

\frac{1}{x}-\frac{2}{3}-4 x=0

Taking LCM,

\frac{3-12 x^{2}-2 x}{3 x}=0

Multiplying by 3x on both sides,

-12 x^{2}-2 x+3=0

Dividing by (-) on both sides,

12 x^{2}+2 x-3=0

Using quadratic formula, we can solve for x.

\begin{aligned}x &=\frac{-2 \pm \sqrt{2^{2}-4 \cdot 12 \cdot(-3)}}{2 \cdot 12} \\&=\frac{-2 \pm \sqrt{4+144}}{2 \cdot 144} \\&=\frac{-2 \pm \sqrt{148}}{24} \\&=\frac{-2 \pm 2 \sqrt{37}}{24}\end{aligned}

Taking out common term 2, we get,

\begin{array}{l}{x=\frac{-2(1 \pm \sqrt{37})}{24}} \\{x=\frac{-1 \pm \sqrt{37}}{12}}\end{array}

Thus, the value of x is  x=\frac{-1+\sqrt{37}}{12} and x=\frac{-1-\sqrt{37}}{12}

4 0
3 years ago
Susan received $27 for 6 hours of work. Ricky received $14.25 for 3 hours of work. Which statement is true about there hourly ra
8090 [49]

Answer: C. Rickys rate was 0.25 more per hour" .

Step-by-step explanation:

Susan received $27 for 6 hours of work. Susan's rate we hour will be:

= $27/6

= $4.5

Ricky received $14.25 for 3 hours of work. Ricky's rate will be:

= $14.25/3

= $4.75

From the option given, the correct option is C "Rickys rate was 0.25 more per hour" .

This is because $4.75 - $4.5 = $0.25

3 0
3 years ago
Which is the best summary of this part of the passage?
nignag [31]

Answer: d

hahehebbsjdhdbrbsndjjd

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Other questions:
  • Convert 3 over 11 to a decimal by long division
    15·1 answer
  • The sides of a triangle measure 2.24 inches, 3.56 inches, and 4.50 inches. What is the perimeter of this triangle? Report the an
    6·2 answers
  • If two angles do not form a linear pair, then they are not adjacent angles. true or false?
    13·1 answer
  • Round the number to the place of the underlined digit.<br><br> 0.758
    15·1 answer
  • Help me plz<br> Solve for X<br> 20 points*
    7·1 answer
  • Can someone please help with any of these
    11·2 answers
  • Divide £42 in a ratio of 4:6
    10·1 answer
  • Barry orders a wallet for $8.99, a sweater for $14.49, and a watch for $72.49 from mail order catalog he adds $11.52 for tax shi
    10·2 answers
  • About 20 raindrops will make one milliliter. How many raindrops would you need to fill a 3.5 liter bottle?
    11·1 answer
  • PLEASE HELP ME ASAP ITS A EXAM
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!