1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lara [203]
3 years ago
13

Prove that

Mathematics
1 answer:
Pani-rosa [81]3 years ago
7 0
Let's start from what we know.

(1)\qquad\sum\limits_{k=1}^n1=\underbrace{1+1+\ldots+1}_{n}=n\cdot 1=n\\\\\\
(2)\qquad\sum\limits_{k=1}^nk=1+2+3+\ldots+n=\dfrac{n(n+1)}{2}\quad\text{(arithmetic  series)}\\\\\\
(3)\qquad\sum\limits_{k=1}^nk\ \textgreater \ 0\quad\implies\quad\left|\sum\limits_{k=1}^nk\right|=\sum\limits_{k=1}^nk

Note that:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=(-1)^1\cdot1^2+(-1)^2\cdot2^2+(-1)^3\cdot3^2+\dots+(-1)^n\cdot n^2=\\\\\\=-1^2+2^2-3^2+4^2-5^2+\dots\pm n^2

(sign of last term will be + when n is even and - when n is odd).
Sum is finite so we can split it into two sums, first S_n^+ with only positive trems (squares of even numbers) and second S_n^- with negative (squares of odd numbers). So:

\sum\limits_{k=1}^n(-1)^k\cdot k^2=S_n^+-S_n^-

And now the proof.

1) n is even.

In this case, both S_n^+ and S_n^- have \dfrac{n}{2} terms. For example if n=8 then:

S_8^+=\underbrace{2^2+4^2+6^2+8^2}_{\frac{8}{2}=4}\qquad\text{(even numbers)}\\\\\\
S_8^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{8}{2}=4}\qquad\text{(odd numbers)}\\\\\\

Generally, there will be:

S_n^+=\sum\limits_{k=1}^\frac{n}{2}(2k)^2\\\\\\S_n^-=\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\\\\\\

Now, calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^\frac{n}{2}(2k)^2-\sum\limits_{k=1}^\frac{n}{2}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^\frac{n}{2}4k^2-\sum\limits_{k=1}^\frac{n}{2}\left(4k^2-4k+1\right)\right|=\\\\\\

=\left|4\sum\limits_{k=1}^\frac{n}{2}k^2-4\sum\limits_{k=1}^\frac{n}{2}k^2+4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|=\left|4\sum\limits_{k=1}^\frac{n}{2}k-\sum\limits_{k=1}^\frac{n}{2}1\right|\stackrel{(1),(2)}{=}\\\\\\=
\left|4\dfrac{\frac{n}{2}(\frac{n}{2}+1)}{2}-\dfrac{n}{2}\right|=\left|2\cdot\dfrac{n}{2}\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\left|n\left(\dfrac{n}{2}+1\right)-\dfrac{n}{2}\right|=\\\\\\


=\left|\dfrac{n^2}{2}+n-\dfrac{n}{2}\right|=\left|\dfrac{n^2}{2}+\dfrac{n}{2}\right|=\left|\dfrac{n^2+n}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\\\\\\\stackrel{(2)}{=}
\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

So in this case we prove, that:

 \left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk

2) n is odd.

Here, S_n^- has more terms than S_n^+. For example if n=7 then:

S_7^-=\underbrace{1^2+3^2+5^2+7^2}_{\frac{n+1}{2}=\frac{7+1}{2}=4}\\\\\\
S_7^+=\underbrace{2^2+4^4+6^2}_{\frac{n+1}{2}-1=\frac{7+1}{2}-1=3}\\\\\\

So there is \dfrac{n+1}{2} terms in S_n^-, \dfrac{n+1}{2}-1 terms in S_n^+ and:

S_n^+=\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2\\\\\\
S_n^-=\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2

Now, we can calculate our sum:

\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\left|S_n^+-S_n^-\right|=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}(2k)^2-\sum\limits_{k=1}^{\frac{n+1}{2}}(2k-1)^2\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}\left(4k^2-4k+1\right)\right|=\\\\\\=
\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}}4k^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\

=\left|\sum\limits_{k=1}^{\frac{n-1}{2}-1}4k^2-\sum\limits_{k=1}^{\frac{n+1}{2}-1}4k^2-4\left(\dfrac{n+1}{2}\right)^2+\sum\limits_{k=1}^{\frac{n+1}{2}}4k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|=\\\\\\=
\left|-4\left(\dfrac{n+1}{2}\right)^2+4\sum\limits_{k=1}^{\frac{n+1}{2}}k-\sum\limits_{k=1}^{\frac{n+1}{2}}1\right|\stackrel{(1),(2)}{=}\\\\\\
\stackrel{(1),(2)}{=}\left|-4\dfrac{n^2+2n+1}{4}+4\dfrac{\frac{n+1}{2}\left(\frac{n+1}{2}+1\right)}{2}-\dfrac{n+1}{2}\right|=\\\\\\

=\left|-n^2-2n-1+2\cdot\dfrac{n+1}{2}\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+(n+1)\left(\dfrac{n+1}{2}+1\right)-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-2n-1+\dfrac{(n+1)^2}{2}+n+1-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2+2n+1}{2}-\dfrac{n+1}{2}\right|=\\\\\\=
\left|-n^2-n+\dfrac{n^2}{2}+n+\dfrac{1}{2}-\dfrac{n}{2}-\dfrac{1}{2}\right|=\left|-\dfrac{n^2}{2}-\dfrac{n}{2}\right|=\left|-\dfrac{n^2+n}{2}\right|=\\\\\\

=\left|-\dfrac{n(n+1)}{2}\right|=|-1|\cdot\left|\dfrac{n(n+1)}{2}\right|=\left|\dfrac{n(n+1)}{2}\right|\stackrel{(2)}{=}\left|\sum\limits_{k=1}^nk\right|\stackrel{(3)}{=}\sum\limits_{k=1}^nk

We consider all possible n so we prove that:

\forall_{n\in\mathbb{N}}\quad\left|\sum\limits_{k=1}^n(-1)^k\cdot k^2\right|=\sum\limits_{k=1}^nk
You might be interested in
Can someone help me ???
Sphinxa [80]
Rational numbers are whole integers w no fractions. bc the square root of 72 is not a whole number, it is irrational
4 0
3 years ago
Joan buys cans of beans in bulk. She buys 3 cases of beans for a total of $23.15. Each case contains 6 cans of beans. Complete e
Harman [31]
Start by multiplying six by 3 and getting 18. thendivide 23.15 by 18 = 1.2861111
that's the answer.
8 0
3 years ago
PLEASE ANSWER ASAP I NEED HELP. <br> IT WILL BE MUCH APPRECIATED<br> find the product (x+4)(x-3)
iragen [17]

Answer:

Work shown below!

Step-by-step explanation:

(x + 4)(x - 3) = x^{2} -3x+4x-12=x^{2} +x-12

8 0
2 years ago
Read 2 more answers
Question 57 need help
prisoha [69]
Okay so first we need to find the height ofn one hay barrel. To do this we must use the equations v= h×w×l

We already know 3 out of the 4 variables in the equations, in this case we are given the volume so we must work backwards.

The equation will look like this:
10 \frac{2}{3}    = h \times (1  \frac{1}{3} ) \times 4
First we must mulitpy 4 and 1 1/3 to get 16/3. The equation will now look like:
10 \frac{2}{3}  = h \times  \frac{16}{3}
Next divide 16/3 from h then from 10 2/3 to get :
2 = h
The height is 2ft. Finally multiply 2 by the number of hay barrels (8) placed upon each other becuase we're finding the height and you will get your answer of 16 ft in height.
8 0
3 years ago
Read 2 more answers
What's the slope-intercept form that passes through the points (0, -1) and (1, 5)?
Rzqust [24]

Answer:

<h2>         y = 6x - 1</h2>

Step-by-step explanation:

\bold{slope\, (m)=\dfrac{change\ in\ Y}{change\ in\ X}=\dfrac{y_2-y_1}{x_2-x_1}}

(0, -1)    ⇒     x₁ = 0,  y₁ = -1

(1, 5)     ⇒     x₂ = 1,  y₂ = 5

So the slope:

                     \bold{m=\dfrac{5+1}{1-0}=\dfrac{6}{1}=6}

The slope-intercept form of the equation of line is y = mx + b, where m is the slope and b is the y-intercept of the line.

(0, -1)    ⇒     x₀ = 0,  y₀ = -1      ⇒   b = -1

Therefore:

                 y = 6x - 1          ←  the slope-intercept form of the equation

5 0
3 years ago
Other questions:
  • How can you use a number line to help find the value of (-2) + 5?
    8·1 answer
  • Tiffany buys a basket of watermelons on sale for $9 before tax. The sales tax is 9%.
    11·1 answer
  • To the nearest hundredth, how many cm are in 60 in? (1 in = 2.54 cm)
    14·1 answer
  • @bobross, @dqswag
    12·1 answer
  • PLEASE ANSWER ASAP !!!!!!!!!!!!!!!!!!! WILL GET BRAINLEST IF CORRECT!!!!!!!!!!!!!!!!!!!!!!
    5·1 answer
  • The pirates plank has a perimeter of 18 feet and an area of 14 square feet.Which answer below most likely describe Pirates plank
    12·1 answer
  • Is this a function yes or no
    15·1 answer
  • Can somebody help with my 2 way table assignments..? i know some of you will take this as a fre.e points question and i don't re
    13·1 answer
  • Find the value of x in the figure.
    5·2 answers
  • Solve the question below
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!