Answer:
The margin of error for the 95% confidence interval used to estimate the population proportion is of 0.0209.
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the z-score that has a p-value of
.
The margin of error is of:

In a clinical test with 2161 subjects, 1214 showed improvement from the treatment.
This means that 
95% confidence level
So
, z is the value of Z that has a p-value of
, so
.
Margin of error:



The margin of error for the 95% confidence interval used to estimate the population proportion is of 0.0209.
Answer: C
Step-by-step explanation:
3(x+4y-2)
3x+12y-6
Answer:
3x=12
Step-by-step explanation:
3 times X with x being 4 making it 12 so X=4 and 3x=12
Answer:
distance = 5 units
Step-by-step explanation:
In order to solve this problem we can start by plotting the two points you were provided with (see attached picture). This will help us visualize the problem better.
Now, we need to find the distance between those two points, so in order to do so we can use the distance formula:

in this case the x's and y's are given by the given points, since they are written as ordere pairs. And ordered pairs are written in the form (x,y). So for Point C:
C=(-1,4)


and for point D
D=(2.0)


so we can now use those values in our distance formula so we get:




d=5 units.
Answer:
Please read the complete procedure below:
Step-by-step explanation:
You have the following initial value problem:

a) The algebraic equation obtain by using the Laplace transform is:
![L[y']+2L[y]=4L[t]\\\\L[y']=sY(s)-y(0)\ \ \ \ (1)\\\\L[t]=\frac{1}{s^2}\ \ \ \ \ (2)\\\\](https://tex.z-dn.net/?f=L%5By%27%5D%2B2L%5By%5D%3D4L%5Bt%5D%5C%5C%5C%5CL%5By%27%5D%3DsY%28s%29-y%280%29%5C%20%5C%20%5C%20%5C%20%281%29%5C%5C%5C%5CL%5Bt%5D%3D%5Cfrac%7B1%7D%7Bs%5E2%7D%5C%20%5C%20%5C%20%5C%20%5C%20%282%29%5C%5C%5C%5C)
next, you replace (1) and (2):
(this is the algebraic equation)
b)
(this is the solution for Y(s))
c)
![y(t)=L^{-1}Y(s)=L^{-1}[\frac{4}{s^2(s+2)}+\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+L^{-1}[\frac{8}{s+2}]\\\\=L^{-1}[\frac{4}{s^2(s+2)}]+8e^{-2t}](https://tex.z-dn.net/?f=y%28t%29%3DL%5E%7B-1%7DY%28s%29%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%2B%5Cfrac%7B8%7D%7Bs%2B2%7D%5D%5C%5C%5C%5C%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%5D%2BL%5E%7B-1%7D%5B%5Cfrac%7B8%7D%7Bs%2B2%7D%5D%5C%5C%5C%5C%3DL%5E%7B-1%7D%5B%5Cfrac%7B4%7D%7Bs%5E2%28s%2B2%29%7D%5D%2B8e%5E%7B-2t%7D)
To find the inverse Laplace transform of the first term you use partial fractions:

Thus, you have:
(this is the solution to the differential equation)