Answer:
Step-by-step explanation:
4) parallel because 118° is a supplement to 62° and the corresponding angles are both 118°
5) NOT parallel. The labeled angles sum to 120° and would sum to 180° for parallel lines.
6) NOT parallel. see pic.
If parallel, extending a line to intersect ℓ₁ makes an opposite internal angle which would also be 48°. The created triangle would have its third angle at 180 - 90 - 48 = 42° which is opposite a labeled 48° angle, which is false, so the lines cannot be parallel
7)
b = 78° as it corresponds with a labeled angle above it
a = 180 - 78 = 102° as angles along a line from a common vertex sum to 180
f = is an opposite angle to 180 - 78 - 44 = 58° as angles along a line from a common vertex sum to 180
e = 180 - 90 - 64 = 26° as angles along a line from a common vertex sum to 180
c = 58° as it corresponds with f
d = 180 - 58 = 122° as angles along a line from a common vertex sum to 180
for 1st
use the formula of inlargement
A(x,y)when enlarging by scale factor k gives A'(kx,ky)
for 2nd
a=
(2a+3)-(a-5)(2a+2)+a^2
b=
3y(7y-8)
Answer:
first x=2
second x=1
Step-by-step explanation: