Answer:
150
Step-by-step explanation:
you have three days and 7.5 so decide 7.5 by 3 it equals 2.5 which in minutes is 150
As you can see, angle 5 and angle 6 are supplementary. And angle 5 and angle 3 are congruent because they are alternate interior angles.
So it will be
x+2 = 180- x+3
move x over from the right to the left
2x+2 = 183
move 2 over from the left to the right
2x = 181
divide by 2
x= 90.5
and angle 3 and angle 1 are vertical angles so they are congruent. Using the angle 3 formula to solve for the answer:
90.5+3 =93.5
When angles are congruent, their measures are congruent, therefore, measure of angle 1 is 93.5
7. because you would put the number set into order from least to greatest first, ti would look like this: 2,3,4,5,9,10,12,12. then go to the middle, crossing one from each side off at one time. Then you get 5 and 9 in the middle. Then the middle between 5 and 9 is seven, you can check this by: 5+9=14, then 14/2= 7.
Your median is 7.
<span>In logic, the converse of a conditional statement is the result of reversing its two parts. For example, the statement P → Q, has the converse of Q → P.
For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the converse is 'if a figure is a parallelogram, then it is rectangle.'
As can be seen, the converse statement is not true, hence the truth value of the converse statement is false.
</span>
The inverse of a conditional statement is the result of negating both the hypothesis and conclusion of the conditional statement. For example, the inverse of P <span>→ Q is ~P </span><span>→ ~Q.
</span><span><span>For the given statement, 'If a figure is a rectangle, then it is a parallelogram.' the inverse is 'if a figure is not a rectangle, then it is not a parallelogram.'
As can be seen, the inverse statement is not true, hence the truth value of the inverse statement is false.</span>
</span>
The contrapositive of a conditional statement is switching the hypothesis and conclusion of the conditional statement and negating both. For example, the contrapositive of <span>P → Q is ~Q → ~P. </span>
<span><span>For the given statement, 'If a figure is a rectangle, then
it is a parallelogram.' the contrapositive is 'if a figure is not a parallelogram,
then it is not a rectangle.'
As can be seen, the contrapositive statement is true, hence the truth value of the contrapositive statement is true.</span> </span>